mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-02 08:44:44 +00:00
Use correct shapes in unit tests; remove use of unsupported params
This commit is contained in:
parent
26c10b5ab5
commit
bb142435db
3 changed files with 68 additions and 51 deletions
|
@ -245,6 +245,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
|
||||
Supported models:
|
||||
- meta/llama-3.1-8b-instruct
|
||||
- meta/llama-3.2-1b-instruct
|
||||
|
||||
Supported algorithm configs:
|
||||
- LoRA, SFT
|
||||
|
@ -290,10 +291,6 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
|
||||
- LoRA config:
|
||||
## NeMo customizer specific LoRA parameters
|
||||
- adapter_dim: int - Adapter dimension
|
||||
Default: 8 (supports powers of 2)
|
||||
- adapter_dropout: float - Adapter dropout
|
||||
Default: None (0.0-1.0)
|
||||
- alpha: int - Scaling factor for the LoRA update
|
||||
Default: 16
|
||||
Note:
|
||||
|
@ -336,7 +333,7 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper):
|
|||
},
|
||||
"data_config": {"dataset_id", "batch_size"},
|
||||
"optimizer_config": {"lr", "weight_decay"},
|
||||
"lora_config": {"type", "adapter_dim", "adapter_dropout", "alpha"},
|
||||
"lora_config": {"type", "alpha"},
|
||||
}
|
||||
|
||||
# Validate all parameters at once
|
||||
|
|
|
@ -10,14 +10,17 @@ import warnings
|
|||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig
|
||||
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
|
||||
TrainingConfig,
|
||||
TrainingConfigDataConfig,
|
||||
TrainingConfigEfficiencyConfig,
|
||||
TrainingConfigOptimizerConfig,
|
||||
)
|
||||
|
||||
from llama_stack.apis.post_training.post_training import (
|
||||
DataConfig,
|
||||
DatasetFormat,
|
||||
EfficiencyConfig,
|
||||
LoraFinetuningConfig,
|
||||
OptimizerConfig,
|
||||
OptimizerType,
|
||||
TrainingConfig,
|
||||
)
|
||||
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
|
||||
from llama_stack.providers.remote.post_training.nvidia.post_training import (
|
||||
NvidiaPostTrainingAdapter,
|
||||
NvidiaPostTrainingConfig,
|
||||
|
@ -66,11 +69,8 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
|
||||
def test_customizer_parameters_passed(self):
|
||||
"""Test scenario 1: When an optional parameter is passed and value is correctly set."""
|
||||
custom_adapter_dim = 32 # Different from default of 8
|
||||
algorithm_config = LoraFinetuningConfig(
|
||||
type="LoRA",
|
||||
adapter_dim=custom_adapter_dim,
|
||||
adapter_dropout=0.2,
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=True,
|
||||
alpha=16,
|
||||
|
@ -78,8 +78,15 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
||||
)
|
||||
|
||||
data_config = TrainingConfigDataConfig(dataset_id="test-dataset", batch_size=16)
|
||||
optimizer_config = TrainingConfigOptimizerConfig(lr=0.0002)
|
||||
data_config = DataConfig(
|
||||
dataset_id="test-dataset", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
|
||||
)
|
||||
optimizer_config = OptimizerConfig(
|
||||
optimizer_type=OptimizerType.adam,
|
||||
lr=0.0002,
|
||||
weight_decay=0.01,
|
||||
num_warmup_steps=100,
|
||||
)
|
||||
training_config = TrainingConfig(
|
||||
n_epochs=3,
|
||||
data_config=data_config,
|
||||
|
@ -95,7 +102,7 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
training_config=convert_pydantic_to_json_value(training_config),
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
|
@ -114,7 +121,7 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
self._assert_request_params(
|
||||
{
|
||||
"hyperparameters": {
|
||||
"lora": {"adapter_dim": custom_adapter_dim, "adapter_dropout": 0.2, "alpha": 16},
|
||||
"lora": {"alpha": 16},
|
||||
"epochs": 3,
|
||||
"learning_rate": 0.0002,
|
||||
"batch_size": 16,
|
||||
|
@ -130,8 +137,6 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
|
||||
algorithm_config = LoraFinetuningConfig(
|
||||
type="LoRA",
|
||||
adapter_dim=16,
|
||||
adapter_dropout=0.1,
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=True,
|
||||
alpha=16,
|
||||
|
@ -139,12 +144,16 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
||||
)
|
||||
|
||||
data_config = TrainingConfigDataConfig(
|
||||
dataset_id=required_dataset_id, # Required parameter
|
||||
batch_size=8,
|
||||
data_config = DataConfig(
|
||||
dataset_id=required_dataset_id, batch_size=8, shuffle=False, data_format=DatasetFormat.instruct
|
||||
)
|
||||
|
||||
optimizer_config = TrainingConfigOptimizerConfig(lr=0.0001)
|
||||
optimizer_config = OptimizerConfig(
|
||||
optimizer_type=OptimizerType.adam,
|
||||
lr=0.0001,
|
||||
weight_decay=0.01,
|
||||
num_warmup_steps=100,
|
||||
)
|
||||
|
||||
training_config = TrainingConfig(
|
||||
n_epochs=1,
|
||||
|
@ -161,7 +170,7 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
model=required_model, # Required parameter
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
training_config=convert_pydantic_to_json_value(training_config),
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
|
@ -186,24 +195,24 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
|
||||
def test_unsupported_parameters_warning(self):
|
||||
"""Test that warnings are raised for unsupported parameters."""
|
||||
data_config = TrainingConfigDataConfig(
|
||||
data_config = DataConfig(
|
||||
dataset_id="test-dataset",
|
||||
batch_size=8,
|
||||
# Unsupported parameters
|
||||
shuffle=True,
|
||||
data_format="instruct",
|
||||
data_format=DatasetFormat.instruct,
|
||||
validation_dataset_id="val-dataset",
|
||||
)
|
||||
|
||||
optimizer_config = TrainingConfigOptimizerConfig(
|
||||
optimizer_config = OptimizerConfig(
|
||||
lr=0.0001,
|
||||
weight_decay=0.01,
|
||||
# Unsupported parameters
|
||||
optimizer_type="adam",
|
||||
optimizer_type=OptimizerType.adam,
|
||||
num_warmup_steps=100,
|
||||
)
|
||||
|
||||
efficiency_config = TrainingConfigEfficiencyConfig(
|
||||
efficiency_config = EfficiencyConfig(
|
||||
enable_activation_checkpointing=True # Unsupported parameter
|
||||
)
|
||||
|
||||
|
@ -230,15 +239,13 @@ class TestNvidiaParameters(unittest.TestCase):
|
|||
checkpoint_dir="test-dir", # Unsupported parameter
|
||||
algorithm_config=LoraFinetuningConfig(
|
||||
type="LoRA",
|
||||
adapter_dim=16,
|
||||
adapter_dropout=0.1,
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=True,
|
||||
alpha=16,
|
||||
rank=16,
|
||||
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
||||
),
|
||||
training_config=training_config,
|
||||
training_config=convert_pydantic_to_json_value(training_config),
|
||||
logger_config={"test": "value"}, # Unsupported parameter
|
||||
hyperparam_search_config={"test": "value"}, # Unsupported parameter
|
||||
)
|
||||
|
|
|
@ -10,13 +10,17 @@ import warnings
|
|||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
|
||||
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
|
||||
TrainingConfig,
|
||||
TrainingConfigDataConfig,
|
||||
TrainingConfigOptimizerConfig,
|
||||
)
|
||||
|
||||
from llama_stack.apis.post_training.post_training import (
|
||||
DataConfig,
|
||||
DatasetFormat,
|
||||
LoraFinetuningConfig,
|
||||
OptimizerConfig,
|
||||
OptimizerType,
|
||||
QATFinetuningConfig,
|
||||
TrainingConfig,
|
||||
)
|
||||
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
|
||||
from llama_stack.providers.remote.post_training.nvidia.post_training import (
|
||||
ListNvidiaPostTrainingJobs,
|
||||
NvidiaPostTrainingAdapter,
|
||||
|
@ -105,7 +109,7 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
"batch_size": 16,
|
||||
"epochs": 2,
|
||||
"learning_rate": 0.0001,
|
||||
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
|
||||
"lora": {"alpha": 16},
|
||||
},
|
||||
"output_model": "default/job-1234",
|
||||
"status": "created",
|
||||
|
@ -116,8 +120,6 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
|
||||
algorithm_config = LoraFinetuningConfig(
|
||||
type="LoRA",
|
||||
adapter_dim=16,
|
||||
adapter_dropout=0.1,
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=True,
|
||||
alpha=16,
|
||||
|
@ -125,10 +127,15 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
||||
)
|
||||
|
||||
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
||||
data_config = DataConfig(
|
||||
dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
|
||||
)
|
||||
|
||||
optimizer_config = TrainingConfigOptimizerConfig(
|
||||
optimizer_config = OptimizerConfig(
|
||||
optimizer_type=OptimizerType.adam,
|
||||
lr=0.0001,
|
||||
weight_decay=0.01,
|
||||
num_warmup_steps=100,
|
||||
)
|
||||
|
||||
training_config = TrainingConfig(
|
||||
|
@ -145,7 +152,7 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
training_config=convert_pydantic_to_json_value(training_config),
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
|
@ -169,16 +176,22 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
"epochs": 2,
|
||||
"batch_size": 16,
|
||||
"learning_rate": 0.0001,
|
||||
"lora": {"alpha": 16, "adapter_dim": 16, "adapter_dropout": 0.1},
|
||||
"weight_decay": 0.01,
|
||||
"lora": {"alpha": 16},
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
def test_supervised_fine_tune_with_qat(self):
|
||||
algorithm_config = QatFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
|
||||
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
|
||||
optimizer_config = TrainingConfigOptimizerConfig(
|
||||
algorithm_config = QATFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
|
||||
data_config = DataConfig(
|
||||
dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
|
||||
)
|
||||
optimizer_config = OptimizerConfig(
|
||||
optimizer_type=OptimizerType.adam,
|
||||
lr=0.0001,
|
||||
weight_decay=0.01,
|
||||
num_warmup_steps=100,
|
||||
)
|
||||
training_config = TrainingConfig(
|
||||
n_epochs=2,
|
||||
|
@ -193,7 +206,7 @@ class TestNvidiaPostTraining(unittest.TestCase):
|
|||
model="meta-llama/Llama-3.1-8B-Instruct",
|
||||
checkpoint_dir="",
|
||||
algorithm_config=algorithm_config,
|
||||
training_config=training_config,
|
||||
training_config=convert_pydantic_to_json_value(training_config),
|
||||
logger_config={},
|
||||
hyperparam_search_config={},
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue