feat: Add rerank models and rerank API change (#3831)

# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- Extend the model type to include rerank models.
- Implement `rerank()` method in inference router.
- Add `rerank_model_list` to `OpenAIMixin` to enable providers to
register and identify rerank models
- Update documentation.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
```
pytest tests/unit/providers/utils/inference/test_openai_mixin.py
```
This commit is contained in:
Jiayi Ni 2025-10-22 12:02:28 -07:00 committed by GitHub
parent f2598d30e6
commit bb1ebb3c6b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 186 additions and 43 deletions

View file

@ -3,9 +3,10 @@ description: "Inference
Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Two kinds of models are supported:
This API provides the raw interface to the underlying models. Three kinds of models are supported:
- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search."
- Embedding models: these models generate embeddings to be used for semantic search.
- Rerank models: these models reorder the documents based on their relevance to a query."
sidebar_label: Inference
title: Inference
---
@ -18,8 +19,9 @@ Inference
Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Two kinds of models are supported:
This API provides the raw interface to the underlying models. Three kinds of models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search.
- Rerank models: these models reorder the documents based on their relevance to a query.
This section contains documentation for all available providers for the **inference** API.

View file

@ -13467,7 +13467,7 @@
},
{
"name": "Inference",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Two kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Three kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.\n- Rerank models: these models reorder the documents based on their relevance to a query.",
"x-displayName": "Inference"
},
{

View file

@ -10218,13 +10218,16 @@ tags:
embeddings.
This API provides the raw interface to the underlying models. Two kinds of models
are supported:
This API provides the raw interface to the underlying models. Three kinds of
models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic
search.
- Rerank models: these models reorder the documents based on their relevance
to a query.
x-displayName: Inference
- name: Models
description: ''

View file

@ -6859,7 +6859,8 @@
"type": "string",
"enum": [
"llm",
"embedding"
"embedding",
"rerank"
],
"title": "ModelType",
"description": "Enumeration of supported model types in Llama Stack."
@ -13269,7 +13270,7 @@
},
{
"name": "Inference",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Two kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Three kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.\n- Rerank models: these models reorder the documents based on their relevance to a query.",
"x-displayName": "Inference"
},
{

View file

@ -5269,6 +5269,7 @@ components:
enum:
- llm
- embedding
- rerank
title: ModelType
description: >-
Enumeration of supported model types in Llama Stack.
@ -10190,13 +10191,16 @@ tags:
embeddings.
This API provides the raw interface to the underlying models. Two kinds of models
are supported:
This API provides the raw interface to the underlying models. Three kinds of
models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic
search.
- Rerank models: these models reorder the documents based on their relevance
to a query.
x-displayName: Inference
- name: Inspect
description: >-

View file

@ -8531,7 +8531,8 @@
"type": "string",
"enum": [
"llm",
"embedding"
"embedding",
"rerank"
],
"title": "ModelType",
"description": "Enumeration of supported model types in Llama Stack."
@ -17959,7 +17960,7 @@
},
{
"name": "Inference",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Two kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.",
"description": "Llama Stack Inference API for generating completions, chat completions, and embeddings.\n\nThis API provides the raw interface to the underlying models. Three kinds of models are supported:\n- LLM models: these models generate \"raw\" and \"chat\" (conversational) completions.\n- Embedding models: these models generate embeddings to be used for semantic search.\n- Rerank models: these models reorder the documents based on their relevance to a query.",
"x-displayName": "Inference"
},
{

View file

@ -6482,6 +6482,7 @@ components:
enum:
- llm
- embedding
- rerank
title: ModelType
description: >-
Enumeration of supported model types in Llama Stack.
@ -13585,13 +13586,16 @@ tags:
embeddings.
This API provides the raw interface to the underlying models. Two kinds of models
are supported:
This API provides the raw interface to the underlying models. Three kinds of
models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic
search.
- Rerank models: these models reorder the documents based on their relevance
to a query.
x-displayName: Inference
- name: Inspect
description: >-

View file

@ -1234,9 +1234,10 @@ class Inference(InferenceProvider):
Llama Stack Inference API for generating completions, chat completions, and embeddings.
This API provides the raw interface to the underlying models. Two kinds of models are supported:
This API provides the raw interface to the underlying models. Three kinds of models are supported:
- LLM models: these models generate "raw" and "chat" (conversational) completions.
- Embedding models: these models generate embeddings to be used for semantic search.
- Rerank models: these models reorder the documents based on their relevance to a query.
"""
@webmethod(route="/openai/v1/chat/completions", method="GET", level=LLAMA_STACK_API_V1, deprecated=True)

View file

@ -27,10 +27,12 @@ class ModelType(StrEnum):
"""Enumeration of supported model types in Llama Stack.
:cvar llm: Large language model for text generation and completion
:cvar embedding: Embedding model for converting text to vector representations
:cvar rerank: Reranking model for reordering documents based on their relevance to a query
"""
llm = "llm"
embedding = "embedding"
rerank = "rerank"
@json_schema_type

View file

@ -44,9 +44,14 @@ from llama_stack.apis.inference import (
OpenAIEmbeddingsResponse,
OpenAIMessageParam,
Order,
RerankResponse,
StopReason,
ToolPromptFormat,
)
from llama_stack.apis.inference.inference import (
OpenAIChatCompletionContentPartImageParam,
OpenAIChatCompletionContentPartTextParam,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
from llama_stack.log import get_logger
@ -182,6 +187,23 @@ class InferenceRouter(Inference):
raise ModelTypeError(model_id, model.model_type, expected_model_type)
return model
async def rerank(
self,
model: str,
query: str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam,
items: list[str | OpenAIChatCompletionContentPartTextParam | OpenAIChatCompletionContentPartImageParam],
max_num_results: int | None = None,
) -> RerankResponse:
logger.debug(f"InferenceRouter.rerank: {model}")
model_obj = await self._get_model(model, ModelType.rerank)
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
return await provider.rerank(
model=model_obj.identifier,
query=query,
items=items,
max_num_results=max_num_results,
)
async def openai_completion(
self,
params: Annotated[OpenAICompletionRequestWithExtraBody, Body(...)],

View file

@ -48,6 +48,7 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
- overwrite_completion_id: If True, overwrites the 'id' field in OpenAI responses
- download_images: If True, downloads images and converts to base64 for providers that require it
- embedding_model_metadata: A dictionary mapping model IDs to their embedding metadata
- construct_model_from_identifier: Method to construct a Model instance corresponding to the given identifier
- provider_data_api_key_field: Optional field name in provider data to look for API key
- list_provider_model_ids: Method to list available models from the provider
- get_extra_client_params: Method to provide extra parameters to the AsyncOpenAI client
@ -121,6 +122,30 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
"""
return {}
def construct_model_from_identifier(self, identifier: str) -> Model:
"""
Construct a Model instance corresponding to the given identifier
Child classes can override this to customize model typing/metadata.
:param identifier: The provider's model identifier
:return: A Model instance
"""
if metadata := self.embedding_model_metadata.get(identifier):
return Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=identifier,
identifier=identifier,
model_type=ModelType.embedding,
metadata=metadata,
)
return Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=identifier,
identifier=identifier,
model_type=ModelType.llm,
)
async def list_provider_model_ids(self) -> Iterable[str]:
"""
List available models from the provider.
@ -416,21 +441,7 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
if self.allowed_models and provider_model_id not in self.allowed_models:
logger.info(f"Skipping model {provider_model_id} as it is not in the allowed models list")
continue
if metadata := self.embedding_model_metadata.get(provider_model_id):
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=provider_model_id,
identifier=provider_model_id,
model_type=ModelType.embedding,
metadata=metadata,
)
else:
model = Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=provider_model_id,
identifier=provider_model_id,
model_type=ModelType.llm,
)
model = self.construct_model_from_identifier(provider_model_id)
self._model_cache[provider_model_id] = model
return list(self._model_cache.values())

View file

@ -38,6 +38,28 @@ class OpenAIMixinWithEmbeddingsImpl(OpenAIMixinImpl):
}
class OpenAIMixinWithCustomModelConstruction(OpenAIMixinImpl):
"""Test implementation that uses construct_model_from_identifier to add rerank models"""
embedding_model_metadata: dict[str, dict[str, int]] = {
"text-embedding-3-small": {"embedding_dimension": 1536, "context_length": 8192},
"text-embedding-ada-002": {"embedding_dimension": 1536, "context_length": 8192},
}
# Adds rerank models via construct_model_from_identifier
rerank_model_ids: set[str] = {"rerank-model-1", "rerank-model-2"}
def construct_model_from_identifier(self, identifier: str) -> Model:
if identifier in self.rerank_model_ids:
return Model(
provider_id=self.__provider_id__, # type: ignore[attr-defined]
provider_resource_id=identifier,
identifier=identifier,
model_type=ModelType.rerank,
)
return super().construct_model_from_identifier(identifier)
@pytest.fixture
def mixin():
"""Create a test instance of OpenAIMixin with mocked model_store"""
@ -62,6 +84,13 @@ def mixin_with_embeddings():
return OpenAIMixinWithEmbeddingsImpl(config=config)
@pytest.fixture
def mixin_with_custom_model_construction():
"""Create a test instance using custom construct_model_from_identifier"""
config = RemoteInferenceProviderConfig()
return OpenAIMixinWithCustomModelConstruction(config=config)
@pytest.fixture
def mock_models():
"""Create multiple mock OpenAI model objects"""
@ -113,6 +142,19 @@ def mock_client_context():
return _mock_client_context
def _assert_models_match_expected(actual_models, expected_models):
"""Verify the models match expected attributes.
Args:
actual_models: List of models to verify
expected_models: Mapping of model identifier to expected attribute values
"""
for identifier, expected_attrs in expected_models.items():
model = next(m for m in actual_models if m.identifier == identifier)
for attr_name, expected_value in expected_attrs.items():
assert getattr(model, attr_name) == expected_value
class TestOpenAIMixinListModels:
"""Test cases for the list_models method"""
@ -342,21 +384,71 @@ class TestOpenAIMixinEmbeddingModelMetadata:
assert result is not None
assert len(result) == 2
# Find the models in the result
embedding_model = next(m for m in result if m.identifier == "text-embedding-3-small")
llm_model = next(m for m in result if m.identifier == "gpt-4")
expected_models = {
"text-embedding-3-small": {
"model_type": ModelType.embedding,
"metadata": {"embedding_dimension": 1536, "context_length": 8192},
"provider_id": "test-provider",
"provider_resource_id": "text-embedding-3-small",
},
"gpt-4": {
"model_type": ModelType.llm,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "gpt-4",
},
}
# Check embedding model
assert embedding_model.model_type == ModelType.embedding
assert embedding_model.metadata == {"embedding_dimension": 1536, "context_length": 8192}
assert embedding_model.provider_id == "test-provider"
assert embedding_model.provider_resource_id == "text-embedding-3-small"
_assert_models_match_expected(result, expected_models)
# Check LLM model
assert llm_model.model_type == ModelType.llm
assert llm_model.metadata == {} # No metadata for LLMs
assert llm_model.provider_id == "test-provider"
assert llm_model.provider_resource_id == "gpt-4"
class TestOpenAIMixinCustomModelConstruction:
"""Test cases for mixed model types (LLM, embedding, rerank) through construct_model_from_identifier"""
async def test_mixed_model_types_identification(self, mixin_with_custom_model_construction, mock_client_context):
"""Test that LLM, embedding, and rerank models are correctly identified with proper types and metadata"""
# Create mock models: 1 embedding, 1 rerank, 1 LLM
mock_embedding_model = MagicMock(id="text-embedding-3-small")
mock_rerank_model = MagicMock(id="rerank-model-1")
mock_llm_model = MagicMock(id="gpt-4")
mock_models = [mock_embedding_model, mock_rerank_model, mock_llm_model]
mock_client = MagicMock()
async def mock_models_list():
for model in mock_models:
yield model
mock_client.models.list.return_value = mock_models_list()
with mock_client_context(mixin_with_custom_model_construction, mock_client):
result = await mixin_with_custom_model_construction.list_models()
assert result is not None
assert len(result) == 3
expected_models = {
"text-embedding-3-small": {
"model_type": ModelType.embedding,
"metadata": {"embedding_dimension": 1536, "context_length": 8192},
"provider_id": "test-provider",
"provider_resource_id": "text-embedding-3-small",
},
"rerank-model-1": {
"model_type": ModelType.rerank,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "rerank-model-1",
},
"gpt-4": {
"model_type": ModelType.llm,
"metadata": {},
"provider_id": "test-provider",
"provider_resource_id": "gpt-4",
},
}
_assert_models_match_expected(result, expected_models)
class TestOpenAIMixinAllowedModels: