feat(api): Add vector store file batches api (#3642)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 0s
Python Package Build Test / build (3.12) (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 9s
Unit Tests / unit-tests (3.12) (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
UI Tests / ui-tests (22) (push) Successful in 40s
Pre-commit / pre-commit (push) Successful in 1m28s

# What does this PR do?

Add Open AI Compatible vector store file batches api. This functionality
is needed to attach many files to a vector store as a batch.
https://github.com/llamastack/llama-stack/issues/3533

API Stubs have been merged
https://github.com/llamastack/llama-stack/pull/3615
Adds persistence for file batches as discussed in diff
https://github.com/llamastack/llama-stack/pull/3544
(Used claude code for generation and reviewed by me)


## Test Plan
1. Unit tests pass
2. Also verified the cc-vec integration with LLamaStackClient works with
the file batches api. https://github.com/raghotham/cc-vec
2. Integration tests pass
This commit is contained in:
slekkala1 2025-10-06 16:58:22 -07:00 committed by GitHub
parent 597d405e13
commit bba9957edd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
37 changed files with 10322 additions and 53 deletions

View file

@ -245,3 +245,65 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
vector_store_id=vector_store_id,
file_id=file_id,
)
async def openai_create_vector_store_file_batch(
self,
vector_store_id: str,
file_ids: list[str],
attributes: dict[str, Any] | None = None,
chunking_strategy: Any | None = None,
):
await self.assert_action_allowed("update", "vector_db", vector_store_id)
provider = await self.get_provider_impl(vector_store_id)
return await provider.openai_create_vector_store_file_batch(
vector_store_id=vector_store_id,
file_ids=file_ids,
attributes=attributes,
chunking_strategy=chunking_strategy,
)
async def openai_retrieve_vector_store_file_batch(
self,
batch_id: str,
vector_store_id: str,
):
await self.assert_action_allowed("read", "vector_db", vector_store_id)
provider = await self.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store_file_batch(
batch_id=batch_id,
vector_store_id=vector_store_id,
)
async def openai_list_files_in_vector_store_file_batch(
self,
batch_id: str,
vector_store_id: str,
after: str | None = None,
before: str | None = None,
filter: str | None = None,
limit: int | None = 20,
order: str | None = "desc",
):
await self.assert_action_allowed("read", "vector_db", vector_store_id)
provider = await self.get_provider_impl(vector_store_id)
return await provider.openai_list_files_in_vector_store_file_batch(
batch_id=batch_id,
vector_store_id=vector_store_id,
after=after,
before=before,
filter=filter,
limit=limit,
order=order,
)
async def openai_cancel_vector_store_file_batch(
self,
batch_id: str,
vector_store_id: str,
):
await self.assert_action_allowed("update", "vector_db", vector_store_id)
provider = await self.get_provider_impl(vector_store_id)
return await provider.openai_cancel_vector_store_file_batch(
batch_id=batch_id,
vector_store_id=vector_store_id,
)