chore: async inference store write (#3318)

# What does this PR do?


## Test Plan
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 30 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
Before:

============================================================
BENCHMARK RESULTS
============================================================
Total time: 30.00s
Concurrent users: 50
Total requests: 1267
Successful requests: 1267
Failed requests: 0
Success rate: 100.0%
Requests per second: 42.23


After:

============================================================
BENCHMARK RESULTS
============================================================
Total time: 30.00s
Concurrent users: 50
Total requests: 1449
Successful requests: 1449
Failed requests: 0
Success rate: 100.0%
Requests per second: 48.30
This commit is contained in:
ehhuang 2025-09-04 11:37:46 -07:00 committed by GitHub
parent 5bbca56cfc
commit bcc7f2c7d0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 10 additions and 2 deletions

View file

@ -3,6 +3,7 @@ image_name: kubernetes-benchmark-demo
apis: apis:
- agents - agents
- inference - inference
- safety
- telemetry - telemetry
- tool_runtime - tool_runtime
- vector_io - vector_io
@ -30,6 +31,11 @@ providers:
db: ${env.POSTGRES_DB:=llamastack} db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack} user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack} password: ${env.POSTGRES_PASSWORD:=llamastack}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents: agents:
- provider_id: meta-reference - provider_id: meta-reference
provider_type: inline::meta-reference provider_type: inline::meta-reference
@ -95,6 +101,8 @@ models:
- model_id: ${env.INFERENCE_MODEL} - model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference provider_id: vllm-inference
model_type: llm model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: [] vector_dbs: []
datasets: [] datasets: []
scoring_fns: [] scoring_fns: []

View file

@ -527,7 +527,7 @@ class InferenceRouter(Inference):
# Store the response with the ID that will be returned to the client # Store the response with the ID that will be returned to the client
if self.store: if self.store:
await self.store.store_chat_completion(response, messages) asyncio.create_task(self.store.store_chat_completion(response, messages))
if self.telemetry: if self.telemetry:
metrics = self._construct_metrics( metrics = self._construct_metrics(
@ -855,4 +855,4 @@ class InferenceRouter(Inference):
object="chat.completion", object="chat.completion",
) )
logger.debug(f"InferenceRouter.completion_response: {final_response}") logger.debug(f"InferenceRouter.completion_response: {final_response}")
await self.store.store_chat_completion(final_response, messages) asyncio.create_task(self.store.store_chat_completion(final_response, messages))