Merge branch 'main' into nvidia-e2e-notebook

This commit is contained in:
Jash Gulabrai 2025-06-16 09:45:44 -04:00
commit bd64bc99ea
69 changed files with 7913 additions and 2495 deletions

View file

@ -81,6 +81,15 @@ class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
type: Literal["web_search_call"] = "web_search_call"
@json_schema_type
class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
id: str
queries: list[str]
status: str
type: Literal["file_search_call"] = "file_search_call"
results: list[dict[str, Any]] | None = None
@json_schema_type
class OpenAIResponseOutputMessageFunctionToolCall(BaseModel):
call_id: str
@ -119,6 +128,7 @@ class OpenAIResponseOutputMessageMCPListTools(BaseModel):
OpenAIResponseOutput = Annotated[
OpenAIResponseMessage
| OpenAIResponseOutputMessageWebSearchToolCall
| OpenAIResponseOutputMessageFileSearchToolCall
| OpenAIResponseOutputMessageFunctionToolCall
| OpenAIResponseOutputMessageMCPCall
| OpenAIResponseOutputMessageMCPListTools,
@ -362,6 +372,7 @@ class OpenAIResponseInputFunctionToolCallOutput(BaseModel):
OpenAIResponseInput = Annotated[
# Responses API allows output messages to be passed in as input
OpenAIResponseOutputMessageWebSearchToolCall
| OpenAIResponseOutputMessageFileSearchToolCall
| OpenAIResponseOutputMessageFunctionToolCall
| OpenAIResponseInputFunctionToolCallOutput
|
@ -397,9 +408,10 @@ class FileSearchRankingOptions(BaseModel):
@json_schema_type
class OpenAIResponseInputToolFileSearch(BaseModel):
type: Literal["file_search"] = "file_search"
vector_store_id: list[str]
vector_store_ids: list[str]
filters: dict[str, Any] | None = None
max_num_results: int | None = Field(default=10, ge=1, le=50)
ranking_options: FileSearchRankingOptions | None = None
# TODO: add filters
class ApprovalFilter(BaseModel):

View file

@ -23,7 +23,9 @@ class PaginatedResponse(BaseModel):
:param data: The list of items for the current page
:param has_more: Whether there are more items available after this set
:param url: The URL for accessing this list
"""
data: list[dict[str, Any]]
has_more: bool
url: str | None = None

View file

@ -1038,6 +1038,8 @@ class InferenceProvider(Protocol):
# vLLM-specific parameters
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
# for fill-in-the-middle type completion
suffix: str | None = None,
) -> OpenAICompletion:
"""Generate an OpenAI-compatible completion for the given prompt using the specified model.
@ -1058,6 +1060,7 @@ class InferenceProvider(Protocol):
:param temperature: (Optional) The temperature to use.
:param top_p: (Optional) The top p to use.
:param user: (Optional) The user to use.
:param suffix: (Optional) The suffix that should be appended to the completion.
:returns: An OpenAICompletion.
"""
...

View file

@ -15,6 +15,48 @@ from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@json_schema_type
class RRFRanker(BaseModel):
"""
Reciprocal Rank Fusion (RRF) ranker configuration.
:param type: The type of ranker, always "rrf"
:param impact_factor: The impact factor for RRF scoring. Higher values give more weight to higher-ranked results.
Must be greater than 0. Default of 60 is from the original RRF paper (Cormack et al., 2009).
"""
type: Literal["rrf"] = "rrf"
impact_factor: float = Field(default=60.0, gt=0.0) # default of 60 for optimal performance
@json_schema_type
class WeightedRanker(BaseModel):
"""
Weighted ranker configuration that combines vector and keyword scores.
:param type: The type of ranker, always "weighted"
:param alpha: Weight factor between 0 and 1.
0 means only use keyword scores,
1 means only use vector scores,
values in between blend both scores.
"""
type: Literal["weighted"] = "weighted"
alpha: float = Field(
default=0.5,
ge=0.0,
le=1.0,
description="Weight factor between 0 and 1. 0 means only keyword scores, 1 means only vector scores.",
)
Ranker = Annotated[
RRFRanker | WeightedRanker,
Field(discriminator="type"),
]
register_schema(Ranker, name="Ranker")
@json_schema_type
class RAGDocument(BaseModel):
"""
@ -76,7 +118,8 @@ class RAGQueryConfig(BaseModel):
:param chunk_template: Template for formatting each retrieved chunk in the context.
Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict).
Default: "Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n"
:param mode: Search mode for retrievaleither "vector" or "keyword". Default "vector".
:param mode: Search mode for retrievaleither "vector", "keyword", or "hybrid". Default "vector".
:param ranker: Configuration for the ranker to use in hybrid search. Defaults to RRF ranker.
"""
# This config defines how a query is generated using the messages
@ -86,6 +129,7 @@ class RAGQueryConfig(BaseModel):
max_chunks: int = 5
chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
mode: str | None = None
ranker: Ranker | None = Field(default=None) # Only used for hybrid mode
@field_validator("chunk_template")
def validate_chunk_template(cls, v: str) -> str:

View file

@ -8,7 +8,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Protocol, runtime_checkable
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, Field
@ -16,6 +16,7 @@ from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
from llama_stack.strong_typing.schema import register_schema
class Chunk(BaseModel):
@ -37,6 +38,146 @@ class QueryChunksResponse(BaseModel):
scores: list[float]
@json_schema_type
class VectorStoreObject(BaseModel):
"""OpenAI Vector Store object."""
id: str
object: str = "vector_store"
created_at: int
name: str | None = None
usage_bytes: int = 0
file_counts: dict[str, int] = Field(default_factory=dict)
status: str = "completed"
expires_after: dict[str, Any] | None = None
expires_at: int | None = None
last_active_at: int | None = None
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class VectorStoreCreateRequest(BaseModel):
"""Request to create a vector store."""
name: str | None = None
file_ids: list[str] = Field(default_factory=list)
expires_after: dict[str, Any] | None = None
chunking_strategy: dict[str, Any] | None = None
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class VectorStoreModifyRequest(BaseModel):
"""Request to modify a vector store."""
name: str | None = None
expires_after: dict[str, Any] | None = None
metadata: dict[str, Any] | None = None
@json_schema_type
class VectorStoreListResponse(BaseModel):
"""Response from listing vector stores."""
object: str = "list"
data: list[VectorStoreObject]
first_id: str | None = None
last_id: str | None = None
has_more: bool = False
@json_schema_type
class VectorStoreSearchRequest(BaseModel):
"""Request to search a vector store."""
query: str | list[str]
filters: dict[str, Any] | None = None
max_num_results: int = 10
ranking_options: dict[str, Any] | None = None
rewrite_query: bool = False
@json_schema_type
class VectorStoreContent(BaseModel):
type: Literal["text"]
text: str
@json_schema_type
class VectorStoreSearchResponse(BaseModel):
"""Response from searching a vector store."""
file_id: str
filename: str
score: float
attributes: dict[str, str | float | bool] | None = None
content: list[VectorStoreContent]
@json_schema_type
class VectorStoreSearchResponsePage(BaseModel):
"""Response from searching a vector store."""
object: str = "vector_store.search_results.page"
search_query: str
data: list[VectorStoreSearchResponse]
has_more: bool = False
next_page: str | None = None
@json_schema_type
class VectorStoreDeleteResponse(BaseModel):
"""Response from deleting a vector store."""
id: str
object: str = "vector_store.deleted"
deleted: bool = True
@json_schema_type
class VectorStoreChunkingStrategyAuto(BaseModel):
type: Literal["auto"] = "auto"
@json_schema_type
class VectorStoreChunkingStrategyStaticConfig(BaseModel):
chunk_overlap_tokens: int = 400
max_chunk_size_tokens: int = Field(800, ge=100, le=4096)
@json_schema_type
class VectorStoreChunkingStrategyStatic(BaseModel):
type: Literal["static"] = "static"
static: VectorStoreChunkingStrategyStaticConfig
VectorStoreChunkingStrategy = Annotated[
VectorStoreChunkingStrategyAuto | VectorStoreChunkingStrategyStatic, Field(discriminator="type")
]
register_schema(VectorStoreChunkingStrategy, name="VectorStoreChunkingStrategy")
@json_schema_type
class VectorStoreFileLastError(BaseModel):
code: Literal["server_error"] | Literal["rate_limit_exceeded"]
message: str
@json_schema_type
class VectorStoreFileObject(BaseModel):
"""OpenAI Vector Store File object."""
id: str
object: str = "vector_store.file"
attributes: dict[str, Any] = Field(default_factory=dict)
chunking_strategy: VectorStoreChunkingStrategy
created_at: int
last_error: VectorStoreFileLastError | None = None
status: Literal["completed"] | Literal["in_progress"] | Literal["cancelled"] | Literal["failed"]
usage_bytes: int = 0
vector_store_id: str
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
@ -81,3 +222,134 @@ class VectorIO(Protocol):
:returns: A QueryChunksResponse.
"""
...
# OpenAI Vector Stores API endpoints
@webmethod(route="/openai/v1/vector_stores", method="POST")
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
"""Creates a vector store.
:param name: A name for the vector store.
:param file_ids: A list of File IDs that the vector store should use. Useful for tools like `file_search` that can access files.
:param expires_after: The expiration policy for a vector store.
:param chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the `auto` strategy.
:param metadata: Set of 16 key-value pairs that can be attached to an object.
:param embedding_model: The embedding model to use for this vector store.
:param embedding_dimension: The dimension of the embedding vectors (default: 384).
:param provider_id: The ID of the provider to use for this vector store.
:param provider_vector_db_id: The provider-specific vector database ID.
:returns: A VectorStoreObject representing the created vector store.
"""
...
@webmethod(route="/openai/v1/vector_stores", method="GET")
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
"""Returns a list of vector stores.
:param limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
:param order: Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order.
:param after: A cursor for use in pagination. `after` is an object ID that defines your place in the list.
:param before: A cursor for use in pagination. `before` is an object ID that defines your place in the list.
:returns: A VectorStoreListResponse containing the list of vector stores.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="GET")
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
"""Retrieves a vector store.
:param vector_store_id: The ID of the vector store to retrieve.
:returns: A VectorStoreObject representing the vector store.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="POST")
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
"""Updates a vector store.
:param vector_store_id: The ID of the vector store to update.
:param name: The name of the vector store.
:param expires_after: The expiration policy for a vector store.
:param metadata: Set of 16 key-value pairs that can be attached to an object.
:returns: A VectorStoreObject representing the updated vector store.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}", method="DELETE")
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
"""Delete a vector store.
:param vector_store_id: The ID of the vector store to delete.
:returns: A VectorStoreDeleteResponse indicating the deletion status.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/search", method="POST")
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
"""Search for chunks in a vector store.
Searches a vector store for relevant chunks based on a query and optional file attribute filters.
:param vector_store_id: The ID of the vector store to search.
:param query: The query string or array for performing the search.
:param filters: Filters based on file attributes to narrow the search results.
:param max_num_results: Maximum number of results to return (1 to 50 inclusive, default 10).
:param ranking_options: Ranking options for fine-tuning the search results.
:param rewrite_query: Whether to rewrite the natural language query for vector search (default false)
:returns: A VectorStoreSearchResponse containing the search results.
"""
...
@webmethod(route="/openai/v1/vector_stores/{vector_store_id}/files", method="POST")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
"""Attach a file to a vector store.
:param vector_store_id: The ID of the vector store to attach the file to.
:param file_id: The ID of the file to attach to the vector store.
:param attributes: The key-value attributes stored with the file, which can be used for filtering.
:param chunking_strategy: The chunking strategy to use for the file.
:returns: A VectorStoreFileObject representing the attached file.
"""
...

View file

@ -180,6 +180,7 @@ def get_provider_registry(
if provider_type_key in ret[api]:
logger.warning(f"Overriding already registered provider {provider_type_key} for {api.name}")
ret[api][provider_type_key] = spec
logger.info(f"Successfully loaded external provider {provider_type_key}")
except yaml.YAMLError as yaml_err:
logger.error(f"Failed to parse YAML file {spec_path}: {yaml_err}")
raise yaml_err

View file

@ -394,9 +394,13 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None:
logger.error(f"Method {name} incompatible proto: {proto_params} vs. obj: {obj_params}")
missing_methods.append((name, "signature_mismatch"))
else:
# Check if the method is actually implemented in the class
method_owner = next((cls for cls in mro if name in cls.__dict__), None)
if method_owner is None or method_owner.__name__ == protocol.__name__:
# Check if the method has a concrete implementation (not just a protocol stub)
# Find all classes in MRO that define this method
method_owners = [cls for cls in mro if name in cls.__dict__]
# Allow methods from mixins/parents, only reject if ONLY the protocol defines it
if len(method_owners) == 1 and method_owners[0].__name__ == protocol.__name__:
# Only reject if the method is ONLY defined in the protocol itself (abstract stub)
missing_methods.append((name, "not_actually_implemented"))
if missing_methods:

View file

@ -163,6 +163,9 @@ class InferenceRouter(Inference):
messages: list[Message] | InterleavedContent,
tool_prompt_format: ToolPromptFormat | None = None,
) -> int | None:
if not hasattr(self, "formatter") or self.formatter is None:
return None
if isinstance(messages, list):
encoded = self.formatter.encode_dialog_prompt(messages, tool_prompt_format)
else:
@ -423,6 +426,7 @@ class InferenceRouter(Inference):
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
logger.debug(
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
@ -453,6 +457,7 @@ class InferenceRouter(Inference):
user=user,
guided_choice=guided_choice,
prompt_logprobs=prompt_logprobs,
suffix=suffix,
)
provider = self.routing_table.get_provider_impl(model_obj.identifier)
@ -602,7 +607,7 @@ class InferenceRouter(Inference):
async def health(self) -> dict[str, HealthResponse]:
health_statuses = {}
timeout = 0.5
timeout = 1 # increasing the timeout to 1 second for health checks
for provider_id, impl in self.routing_table.impls_by_provider_id.items():
try:
# check if the provider has a health method

View file

@ -9,7 +9,17 @@ from typing import Any
from llama_stack.apis.common.content_types import (
InterleavedContent,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.models import ModelType
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
@ -34,6 +44,31 @@ class VectorIORouter(VectorIO):
logger.debug("VectorIORouter.shutdown")
pass
async def _get_first_embedding_model(self) -> tuple[str, int] | None:
"""Get the first available embedding model identifier."""
try:
# Get all models from the routing table
all_models = await self.routing_table.get_all_with_type("model")
# Filter for embedding models
embedding_models = [
model
for model in all_models
if hasattr(model, "model_type") and model.model_type == ModelType.embedding
]
if embedding_models:
dimension = embedding_models[0].metadata.get("embedding_dimension", None)
if dimension is None:
raise ValueError(f"Embedding model {embedding_models[0].identifier} has no embedding dimension")
return embedding_models[0].identifier, dimension
else:
logger.warning("No embedding models found in the routing table")
return None
except Exception as e:
logger.error(f"Error getting embedding models: {e}")
return None
async def register_vector_db(
self,
vector_db_id: str,
@ -70,3 +105,170 @@ class VectorIORouter(VectorIO):
) -> QueryChunksResponse:
logger.debug(f"VectorIORouter.query_chunks: {vector_db_id}")
return await self.routing_table.get_provider_impl(vector_db_id).query_chunks(vector_db_id, query, params)
# OpenAI Vector Stores API endpoints
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = None,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
logger.debug(f"VectorIORouter.openai_create_vector_store: name={name}, provider_id={provider_id}")
# If no embedding model is provided, use the first available one
if embedding_model is None:
embedding_model_info = await self._get_first_embedding_model()
if embedding_model_info is None:
raise ValueError("No embedding model provided and no embedding models available in the system")
embedding_model, embedding_dimension = embedding_model_info
logger.info(f"No embedding model specified, using first available: {embedding_model}")
vector_db_id = name
registered_vector_db = await self.routing_table.register_vector_db(
vector_db_id,
embedding_model,
embedding_dimension,
provider_id,
provider_vector_db_id,
)
return await self.routing_table.get_provider_impl(registered_vector_db.identifier).openai_create_vector_store(
vector_db_id,
file_ids=file_ids,
expires_after=expires_after,
chunking_strategy=chunking_strategy,
metadata=metadata,
embedding_model=embedding_model,
embedding_dimension=embedding_dimension,
provider_id=registered_vector_db.provider_id,
provider_vector_db_id=registered_vector_db.provider_resource_id,
)
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
logger.debug(f"VectorIORouter.openai_list_vector_stores: limit={limit}")
# Route to default provider for now - could aggregate from all providers in the future
# call retrieve on each vector dbs to get list of vector stores
vector_dbs = await self.routing_table.get_all_with_type("vector_db")
all_stores = []
for vector_db in vector_dbs:
vector_store = await self.routing_table.get_provider_impl(
vector_db.identifier
).openai_retrieve_vector_store(vector_db.identifier)
all_stores.append(vector_store)
# Sort by created_at
reverse_order = order == "desc"
all_stores.sort(key=lambda x: x.created_at, reverse=reverse_order)
# Apply cursor-based pagination
if after:
after_index = next((i for i, store in enumerate(all_stores) if store.id == after), -1)
if after_index >= 0:
all_stores = all_stores[after_index + 1 :]
if before:
before_index = next((i for i, store in enumerate(all_stores) if store.id == before), len(all_stores))
all_stores = all_stores[:before_index]
# Apply limit
limited_stores = all_stores[:limit]
# Determine pagination info
has_more = len(all_stores) > limit
first_id = limited_stores[0].id if limited_stores else None
last_id = limited_stores[-1].id if limited_stores else None
return VectorStoreListResponse(
data=limited_stores,
has_more=has_more,
first_id=first_id,
last_id=last_id,
)
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
logger.debug(f"VectorIORouter.openai_retrieve_vector_store: {vector_store_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_retrieve_vector_store(vector_store_id)
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
logger.debug(f"VectorIORouter.openai_update_vector_store: {vector_store_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_update_vector_store(
vector_store_id=vector_store_id,
name=name,
expires_after=expires_after,
metadata=metadata,
)
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
logger.debug(f"VectorIORouter.openai_delete_vector_store: {vector_store_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
result = await provider.openai_delete_vector_store(vector_store_id)
# drop from registry
await self.routing_table.unregister_vector_db(vector_store_id)
return result
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
logger.debug(f"VectorIORouter.openai_search_vector_store: {vector_store_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_search_vector_store(
vector_store_id=vector_store_id,
query=query,
filters=filters,
max_num_results=max_num_results,
ranking_options=ranking_options,
rewrite_query=rewrite_query,
)
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
logger.debug(f"VectorIORouter.openai_attach_file_to_vector_store: {vector_store_id}, {file_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)
return await provider.openai_attach_file_to_vector_store(
vector_store_id=vector_store_id,
file_id=file_id,
attributes=attributes,
chunking_strategy=chunking_strategy,
)

View file

@ -84,6 +84,7 @@ def get_attributes_from_claims(claims: dict[str, str], mapping: dict[str, str])
class OAuth2JWKSConfig(BaseModel):
# The JWKS URI for collecting public keys
uri: str
token: str | None = Field(default=None, description="token to authorise access to jwks")
key_recheck_period: int = Field(default=3600, description="The period to recheck the JWKS URI for key updates")
@ -246,9 +247,12 @@ class OAuth2TokenAuthProvider(AuthProvider):
if self.config.jwks is None:
raise ValueError("JWKS is not configured")
if time.time() - self._jwks_at > self.config.jwks.key_recheck_period:
headers = {}
if self.config.jwks.token:
headers["Authorization"] = f"Bearer {self.config.jwks.token}"
verify = self.config.tls_cafile.as_posix() if self.config.tls_cafile else self.config.verify_tls
async with httpx.AsyncClient(verify=verify) as client:
res = await client.get(self.config.jwks.uri, timeout=5)
res = await client.get(self.config.jwks.uri, timeout=5, headers=headers)
res.raise_for_status()
jwks_data = res.json()["keys"]
updated = {}

View file

@ -30,6 +30,7 @@ from fastapi.responses import JSONResponse, StreamingResponse
from openai import BadRequestError
from pydantic import BaseModel, ValidationError
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.distribution.datatypes import AuthenticationRequiredError, LoggingConfig, StackRunConfig
from llama_stack.distribution.distribution import builtin_automatically_routed_apis
from llama_stack.distribution.request_headers import PROVIDER_DATA_VAR, User, request_provider_data_context
@ -230,7 +231,10 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
return StreamingResponse(gen, media_type="text/event-stream")
else:
value = func(**kwargs)
return await maybe_await(value)
result = await maybe_await(value)
if isinstance(result, PaginatedResponse) and result.url is None:
result.url = route
return result
except Exception as e:
logger.exception(f"Error executing endpoint {route=} {method=}")
raise translate_exception(e) from e

View file

@ -115,7 +115,7 @@ def parse_environment_config(env_config: str) -> dict[str, int]:
class CustomRichHandler(RichHandler):
def __init__(self, *args, **kwargs):
kwargs["console"] = Console(width=120)
kwargs["console"] = Console(width=150)
super().__init__(*args, **kwargs)
def emit(self, record):

View file

@ -24,6 +24,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputTool,
OpenAIResponseInputToolFileSearch,
OpenAIResponseInputToolMCP,
OpenAIResponseMessage,
OpenAIResponseObject,
@ -34,6 +35,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutput,
OpenAIResponseOutputMessageContent,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageFileSearchToolCall,
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPListTools,
OpenAIResponseOutputMessageWebSearchToolCall,
@ -62,7 +64,7 @@ from llama_stack.apis.inference.inference import (
OpenAIToolMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.tools.tools import ToolGroups, ToolRuntime
from llama_stack.apis.tools import RAGQueryConfig, ToolGroups, ToolRuntime
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
@ -198,7 +200,8 @@ class OpenAIResponsePreviousResponseWithInputItems(BaseModel):
class ChatCompletionContext(BaseModel):
model: str
messages: list[OpenAIMessageParam]
tools: list[ChatCompletionToolParam] | None = None
response_tools: list[OpenAIResponseInputTool] | None = None
chat_tools: list[ChatCompletionToolParam] | None = None
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP]
temperature: float | None
response_format: OpenAIResponseFormatParam
@ -388,7 +391,8 @@ class OpenAIResponsesImpl:
ctx = ChatCompletionContext(
model=model,
messages=messages,
tools=chat_tools,
response_tools=tools,
chat_tools=chat_tools,
mcp_tool_to_server=mcp_tool_to_server,
temperature=temperature,
response_format=response_format,
@ -417,7 +421,7 @@ class OpenAIResponsesImpl:
completion_result = await self.inference_api.openai_chat_completion(
model=ctx.model,
messages=messages,
tools=ctx.tools,
tools=ctx.chat_tools,
stream=True,
temperature=ctx.temperature,
response_format=ctx.response_format,
@ -606,6 +610,12 @@ class OpenAIResponsesImpl:
if not tool:
raise ValueError(f"Tool {tool_name} not found")
chat_tools.append(make_openai_tool(tool_name, tool))
elif input_tool.type == "file_search":
tool_name = "knowledge_search"
tool = await self.tool_groups_api.get_tool(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")
chat_tools.append(make_openai_tool(tool_name, tool))
elif input_tool.type == "mcp":
always_allowed = None
never_allowed = None
@ -667,6 +677,7 @@ class OpenAIResponsesImpl:
tool_call_id = tool_call.id
function = tool_call.function
tool_kwargs = json.loads(function.arguments) if function.arguments else {}
if not function or not tool_call_id or not function.name:
return None, None
@ -680,12 +691,26 @@ class OpenAIResponsesImpl:
endpoint=mcp_tool.server_url,
headers=mcp_tool.headers or {},
tool_name=function.name,
kwargs=json.loads(function.arguments) if function.arguments else {},
kwargs=tool_kwargs,
)
else:
if function.name == "knowledge_search":
response_file_search_tool = next(
t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)
)
if response_file_search_tool:
if response_file_search_tool.filters:
logger.warning("Filters are not yet supported for file_search tool")
if response_file_search_tool.ranking_options:
logger.warning("Ranking options are not yet supported for file_search tool")
tool_kwargs["vector_db_ids"] = response_file_search_tool.vector_store_ids
tool_kwargs["query_config"] = RAGQueryConfig(
mode="vector",
max_chunks=response_file_search_tool.max_num_results,
)
result = await self.tool_runtime_api.invoke_tool(
tool_name=function.name,
kwargs=json.loads(function.arguments) if function.arguments else {},
kwargs=tool_kwargs,
)
except Exception as e:
error_exc = e
@ -713,6 +738,27 @@ class OpenAIResponsesImpl:
)
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
message.status = "failed"
elif function.name == "knowledge_search":
message = OpenAIResponseOutputMessageFileSearchToolCall(
id=tool_call_id,
queries=[tool_kwargs.get("query", "")],
status="completed",
)
if "document_ids" in result.metadata:
message.results = []
for i, doc_id in enumerate(result.metadata["document_ids"]):
text = result.metadata["chunks"][i] if "chunks" in result.metadata else None
score = result.metadata["scores"][i] if "scores" in result.metadata else None
message.results.append(
{
"file_id": doc_id,
"filename": doc_id,
"text": text,
"score": score,
}
)
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
message.status = "failed"
else:
raise ValueError(f"Unknown tool {function.name} called")

View file

@ -121,8 +121,10 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
vector_db_id=vector_db_id,
query=query,
params={
"max_chunks": query_config.max_chunks,
"mode": query_config.mode,
"max_chunks": query_config.max_chunks,
"score_threshold": 0.0,
"ranker": query_config.ranker,
},
)
for vector_db_id in vector_db_ids
@ -170,6 +172,8 @@ class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRunti
content=picked,
metadata={
"document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]],
"chunks": [c.content for c in chunks[: len(picked)]],
"scores": scores[: len(picked)],
},
)

View file

@ -16,6 +16,6 @@ async def get_provider_impl(config: FaissVectorIOConfig, deps: dict[Api, Any]):
assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = FaissVectorIOAdapter(config, deps[Api.inference])
impl = FaissVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
await impl.initialize()
return impl

View file

@ -15,13 +15,19 @@ import faiss
import numpy as np
from numpy.typing import NDArray
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.files import Files
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.kvstore.api import KVStore
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
EmbeddingIndex,
VectorDBWithIndex,
@ -34,6 +40,7 @@ logger = logging.getLogger(__name__)
VERSION = "v3"
VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::"
FAISS_INDEX_PREFIX = f"faiss_index:{VERSION}::"
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::"
class FaissIndex(EmbeddingIndex):
@ -112,7 +119,7 @@ class FaissIndex(EmbeddingIndex):
if i < 0:
continue
chunks.append(self.chunk_by_index[int(i)])
scores.append(1.0 / float(d))
scores.append(1.0 / float(d) if d != 0 else float("inf"))
return QueryChunksResponse(chunks=chunks, scores=scores)
@ -124,13 +131,26 @@ class FaissIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in FAISS")
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in FAISS")
class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference) -> None:
class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None:
self.config = config
self.inference_api = inference_api
self.files_api = files_api
self.cache: dict[str, VectorDBWithIndex] = {}
self.kvstore: KVStore | None = None
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
@ -148,6 +168,9 @@ class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
)
self.cache[vector_db.identifier] = index
# Load existing OpenAI vector stores using the mixin method
self.openai_vector_stores = await self._load_openai_vector_stores()
async def shutdown(self) -> None:
# Cleanup if needed
pass
@ -208,3 +231,35 @@ class FaissVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
raise ValueError(f"Vector DB {vector_db_id} not found")
return await index.query_chunks(query, params)
# OpenAI Vector Store Mixin abstract method implementations
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Save vector store metadata to kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
"""Load all vector store metadata from kvstore."""
assert self.kvstore is not None
start_key = OPENAI_VECTOR_STORES_PREFIX
end_key = f"{OPENAI_VECTOR_STORES_PREFIX}\xff"
stored_openai_stores = await self.kvstore.values_in_range(start_key, end_key)
stores = {}
for store_data in stored_openai_stores:
store_info = json.loads(store_data)
stores[store_info["id"]] = store_info
return stores
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Update vector store metadata in kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.set(key=key, value=json.dumps(store_info))
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
"""Delete vector store metadata from kvstore."""
assert self.kvstore is not None
key = f"{OPENAI_VECTOR_STORES_PREFIX}{store_id}"
await self.kvstore.delete(key)

View file

@ -15,6 +15,6 @@ async def get_provider_impl(config: SQLiteVectorIOConfig, deps: dict[Api, Any]):
from .sqlite_vec import SQLiteVecVectorIOAdapter
assert isinstance(config, SQLiteVectorIOConfig), f"Unexpected config type: {type(config)}"
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference])
impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files, None))
await impl.initialize()
return impl

View file

@ -6,6 +6,7 @@
import asyncio
import hashlib
import json
import logging
import sqlite3
import struct
@ -16,18 +17,30 @@ import numpy as np
import sqlite_vec
from numpy.typing import NDArray
from llama_stack.apis.files.files import Files
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
)
from llama_stack.providers.datatypes import VectorDBsProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import EmbeddingIndex, VectorDBWithIndex
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
from llama_stack.providers.utils.memory.vector_store import (
RERANKER_TYPE_RRF,
RERANKER_TYPE_WEIGHTED,
EmbeddingIndex,
VectorDBWithIndex,
)
logger = logging.getLogger(__name__)
# Specifying search mode is dependent on the VectorIO provider.
VECTOR_SEARCH = "vector"
KEYWORD_SEARCH = "keyword"
SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH}
HYBRID_SEARCH = "hybrid"
SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH, HYBRID_SEARCH}
def serialize_vector(vector: list[float]) -> bytes:
@ -44,6 +57,59 @@ def _create_sqlite_connection(db_path):
return connection
def _normalize_scores(scores: dict[str, float]) -> dict[str, float]:
"""Normalize scores to [0,1] range using min-max normalization."""
if not scores:
return {}
min_score = min(scores.values())
max_score = max(scores.values())
score_range = max_score - min_score
if score_range > 0:
return {doc_id: (score - min_score) / score_range for doc_id, score in scores.items()}
return {doc_id: 1.0 for doc_id in scores}
def _weighted_rerank(
vector_scores: dict[str, float],
keyword_scores: dict[str, float],
alpha: float = 0.5,
) -> dict[str, float]:
"""ReRanker that uses weighted average of scores."""
all_ids = set(vector_scores.keys()) | set(keyword_scores.keys())
normalized_vector_scores = _normalize_scores(vector_scores)
normalized_keyword_scores = _normalize_scores(keyword_scores)
return {
doc_id: (alpha * normalized_keyword_scores.get(doc_id, 0.0))
+ ((1 - alpha) * normalized_vector_scores.get(doc_id, 0.0))
for doc_id in all_ids
}
def _rrf_rerank(
vector_scores: dict[str, float],
keyword_scores: dict[str, float],
impact_factor: float = 60.0,
) -> dict[str, float]:
"""ReRanker that uses Reciprocal Rank Fusion."""
# Convert scores to ranks
vector_ranks = {
doc_id: i + 1 for i, (doc_id, _) in enumerate(sorted(vector_scores.items(), key=lambda x: x[1], reverse=True))
}
keyword_ranks = {
doc_id: i + 1 for i, (doc_id, _) in enumerate(sorted(keyword_scores.items(), key=lambda x: x[1], reverse=True))
}
all_ids = set(vector_scores.keys()) | set(keyword_scores.keys())
rrf_scores = {}
for doc_id in all_ids:
vector_rank = vector_ranks.get(doc_id, float("inf"))
keyword_rank = keyword_ranks.get(doc_id, float("inf"))
# RRF formula: score = 1/(k + r) where k is impact_factor and r is the rank
rrf_scores[doc_id] = (1.0 / (impact_factor + vector_rank)) + (1.0 / (impact_factor + keyword_rank))
return rrf_scores
class SQLiteVecIndex(EmbeddingIndex):
"""
An index implementation that stores embeddings in a SQLite virtual table using sqlite-vec.
@ -248,8 +314,6 @@ class SQLiteVecIndex(EmbeddingIndex):
"""
Performs keyword-based search using SQLite FTS5 for relevance-ranked full-text search.
"""
if query_string is None:
raise ValueError("query_string is required for keyword search.")
def _execute_query():
connection = _create_sqlite_connection(self.db_path)
@ -287,18 +351,95 @@ class SQLiteVecIndex(EmbeddingIndex):
scores.append(score)
return QueryChunksResponse(chunks=chunks, scores=scores)
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str = RERANKER_TYPE_RRF,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
"""
Hybrid search using a configurable re-ranking strategy.
class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
Args:
embedding: The query embedding vector
query_string: The text query for keyword search
k: Number of results to return
score_threshold: Minimum similarity score threshold
reranker_type: Type of reranker to use ("rrf" or "weighted")
reranker_params: Parameters for the reranker
Returns:
QueryChunksResponse with combined results
"""
if reranker_params is None:
reranker_params = {}
# Get results from both search methods
vector_response = await self.query_vector(embedding, k, score_threshold)
keyword_response = await self.query_keyword(query_string, k, score_threshold)
# Convert responses to score dictionaries using generate_chunk_id
vector_scores = {
generate_chunk_id(chunk.metadata["document_id"], str(chunk.content)): score
for chunk, score in zip(vector_response.chunks, vector_response.scores, strict=False)
}
keyword_scores = {
generate_chunk_id(chunk.metadata["document_id"], str(chunk.content)): score
for chunk, score in zip(keyword_response.chunks, keyword_response.scores, strict=False)
}
# Combine scores using the specified reranker
if reranker_type == RERANKER_TYPE_WEIGHTED:
alpha = reranker_params.get("alpha", 0.5)
combined_scores = _weighted_rerank(vector_scores, keyword_scores, alpha)
else:
# Default to RRF for None, RRF, or any unknown types
impact_factor = reranker_params.get("impact_factor", 60.0)
combined_scores = _rrf_rerank(vector_scores, keyword_scores, impact_factor)
# Sort by combined score and get top k results
sorted_items = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
top_k_items = sorted_items[:k]
# Filter by score threshold
filtered_items = [(doc_id, score) for doc_id, score in top_k_items if score >= score_threshold]
# Create a map of chunk_id to chunk for both responses
chunk_map = {}
for c in vector_response.chunks:
chunk_id = generate_chunk_id(c.metadata["document_id"], str(c.content))
chunk_map[chunk_id] = c
for c in keyword_response.chunks:
chunk_id = generate_chunk_id(c.metadata["document_id"], str(c.content))
chunk_map[chunk_id] = c
# Use the map to look up chunks by their IDs
chunks = []
scores = []
for doc_id, score in filtered_items:
if doc_id in chunk_map:
chunks.append(chunk_map[doc_id])
scores.append(score)
return QueryChunksResponse(chunks=chunks, scores=scores)
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
"""
A VectorIO implementation using SQLite + sqlite_vec.
This class handles vector database registration (with metadata stored in a table named `vector_dbs`)
and creates a cache of VectorDBWithIndex instances (each wrapping a SQLiteVecIndex).
"""
def __init__(self, config, inference_api: Inference) -> None:
def __init__(self, config, inference_api: Inference, files_api: Files | None) -> None:
self.config = config
self.inference_api = inference_api
self.files_api = files_api
self.cache: dict[str, VectorDBWithIndex] = {}
self.openai_vector_stores: dict[str, dict[str, Any]] = {}
async def initialize(self) -> None:
def _setup_connection():
@ -313,24 +454,38 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
metadata TEXT
);
""")
# Create a table to persist OpenAI vector stores.
cur.execute("""
CREATE TABLE IF NOT EXISTS openai_vector_stores (
id TEXT PRIMARY KEY,
metadata TEXT
);
""")
connection.commit()
# Load any existing vector DB registrations.
cur.execute("SELECT metadata FROM vector_dbs")
rows = cur.fetchall()
return rows
vector_db_rows = cur.fetchall()
return vector_db_rows
finally:
cur.close()
connection.close()
rows = await asyncio.to_thread(_setup_connection)
for row in rows:
vector_db_rows = await asyncio.to_thread(_setup_connection)
# Load existing vector DBs
for row in vector_db_rows:
vector_db_data = row[0]
vector_db = VectorDB.model_validate_json(vector_db_data)
index = await SQLiteVecIndex.create(
vector_db.embedding_dimension, self.config.db_path, vector_db.identifier
vector_db.embedding_dimension,
self.config.db_path,
vector_db.identifier,
)
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
# Load existing OpenAI vector stores using the mixin method
self.openai_vector_stores = await self._load_openai_vector_stores()
async def shutdown(self) -> None:
# nothing to do since we don't maintain a persistent connection
pass
@ -350,7 +505,11 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
connection.close()
await asyncio.to_thread(_register_db)
index = await SQLiteVecIndex.create(vector_db.embedding_dimension, self.config.db_path, vector_db.identifier)
index = await SQLiteVecIndex.create(
vector_db.embedding_dimension,
self.config.db_path,
vector_db.identifier,
)
self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api)
async def list_vector_dbs(self) -> list[VectorDB]:
@ -375,6 +534,87 @@ class SQLiteVecVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
await asyncio.to_thread(_delete_vector_db_from_registry)
# OpenAI Vector Store Mixin abstract method implementations
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Save vector store metadata to SQLite database."""
def _store():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"INSERT OR REPLACE INTO openai_vector_stores (id, metadata) VALUES (?, ?)",
(store_id, json.dumps(store_info)),
)
connection.commit()
except Exception as e:
logger.error(f"Error saving openai vector store {store_id}: {e}")
raise
finally:
cur.close()
connection.close()
try:
await asyncio.to_thread(_store)
except Exception as e:
logger.error(f"Error saving openai vector store {store_id}: {e}")
raise
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
"""Load all vector store metadata from SQLite database."""
def _load():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute("SELECT metadata FROM openai_vector_stores")
rows = cur.fetchall()
return rows
finally:
cur.close()
connection.close()
rows = await asyncio.to_thread(_load)
stores = {}
for row in rows:
store_data = row[0]
store_info = json.loads(store_data)
stores[store_info["id"]] = store_info
return stores
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Update vector store metadata in SQLite database."""
def _update():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute(
"UPDATE openai_vector_stores SET metadata = ? WHERE id = ?",
(json.dumps(store_info), store_id),
)
connection.commit()
finally:
cur.close()
connection.close()
await asyncio.to_thread(_update)
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
"""Delete vector store metadata from SQLite database."""
def _delete():
connection = _create_sqlite_connection(self.config.db_path)
cur = connection.cursor()
try:
cur.execute("DELETE FROM openai_vector_stores WHERE id = ?", (store_id,))
connection.commit()
finally:
cur.close()
connection.close()
await asyncio.to_thread(_delete)
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
if vector_db_id not in self.cache:
raise ValueError(f"Vector DB {vector_db_id} not found. Found: {list(self.cache.keys())}")

View file

@ -24,6 +24,7 @@ def available_providers() -> list[ProviderSpec]:
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
deprecation_warning="Please use the `inline::faiss` provider instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -32,6 +33,7 @@ def available_providers() -> list[ProviderSpec]:
module="llama_stack.providers.inline.vector_io.faiss",
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
# NOTE: sqlite-vec cannot be bundled into the container image because it does not have a
# source distribution and the wheels are not available for all platforms.
@ -42,6 +44,7 @@ def available_providers() -> list[ProviderSpec]:
module="llama_stack.providers.inline.vector_io.sqlite_vec",
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
InlineProviderSpec(
api=Api.vector_io,
@ -51,6 +54,7 @@ def available_providers() -> list[ProviderSpec]:
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
deprecation_warning="Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.",
api_dependencies=[Api.inference],
optional_api_dependencies=[Api.files],
),
remote_provider_spec(
Api.vector_io,

View file

@ -318,6 +318,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
model_obj = await self.model_store.get_model(model)

View file

@ -316,6 +316,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
provider_model_id = await self._get_provider_model_id(model)

View file

@ -33,7 +33,6 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -46,6 +45,8 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
)
@ -62,8 +63,10 @@ from llama_stack.providers.utils.inference.model_registry import (
from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
b64_encode_openai_embeddings_response,
get_sampling_options,
prepare_openai_completion_params,
prepare_openai_embeddings_params,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
@ -386,7 +389,35 @@ class OllamaInferenceAdapter(
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()
model_obj = await self._get_model(model)
if model_obj.model_type != ModelType.embedding:
raise ValueError(f"Model {model} is not an embedding model")
if model_obj.provider_resource_id is None:
raise ValueError(f"Model {model} has no provider_resource_id set")
# Note, at the moment Ollama does not support encoding_format, dimensions, and user parameters
params = prepare_openai_embeddings_params(
model=model_obj.provider_resource_id,
input=input,
encoding_format=encoding_format,
dimensions=dimensions,
user=user,
)
response = await self.openai_client.embeddings.create(**params)
data = b64_encode_openai_embeddings_response(response.data, encoding_format)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response.usage.prompt_tokens,
total_tokens=response.usage.total_tokens,
)
# TODO: Investigate why model_obj.identifier is used instead of response.model
return OpenAIEmbeddingsResponse(
data=data,
model=model_obj.identifier,
usage=usage,
)
async def openai_completion(
self,
@ -409,6 +440,7 @@ class OllamaInferenceAdapter(
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
if not isinstance(prompt, str):
raise ValueError("Ollama does not support non-string prompts for completion")
@ -432,6 +464,7 @@ class OllamaInferenceAdapter(
temperature=temperature,
top_p=top_p,
user=user,
suffix=suffix,
)
return await self.openai_client.completions.create(**params) # type: ignore

View file

@ -90,6 +90,7 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
if guided_choice is not None:
logging.warning("guided_choice is not supported by the OpenAI API. Ignoring.")
@ -117,6 +118,7 @@ class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
temperature=temperature,
top_p=top_p,
user=user,
suffix=suffix,
)
return await self._openai_client.completions.create(**params)

View file

@ -242,6 +242,7 @@ class PassthroughInferenceAdapter(Inference):
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
client = self._get_client()
model_obj = await self.model_store.get_model(model)

View file

@ -299,6 +299,7 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
model_obj = await self.model_store.get_model(model)
params = await prepare_openai_completion_params(

View file

@ -56,7 +56,11 @@ from llama_stack.apis.inference.inference import (
from llama_stack.apis.models import Model, ModelType
from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.datatypes import (
HealthResponse,
HealthStatus,
ModelsProtocolPrivate,
)
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
@ -298,6 +302,22 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
async def unregister_model(self, model_id: str) -> None:
pass
async def health(self) -> HealthResponse:
"""
Performs a health check by verifying connectivity to the remote vLLM server.
This method is used by the Provider API to verify
that the service is running correctly.
Returns:
HealthResponse: A dictionary containing the health status.
"""
try:
client = self._create_client() if self.client is None else self.client
_ = [m async for m in client.models.list()] # Ensure the client is initialized
return HealthResponse(status=HealthStatus.OK)
except Exception as e:
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
async def _get_model(self, model_id: str) -> Model:
if not self.model_store:
raise ValueError("Model store not set")
@ -539,6 +559,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
self._lazy_initialize_client()
model_obj = await self._get_model(model)

View file

@ -292,6 +292,7 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
model_obj = await self.model_store.get_model(model)
params = await prepare_openai_completion_params(

View file

@ -14,7 +14,16 @@ from numpy.typing import NDArray
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import (
@ -55,7 +64,7 @@ class ChromaIndex(EmbeddingIndex):
)
)
async def query(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
results = await maybe_await(
self.collection.query(
query_embeddings=[embedding.tolist()],
@ -76,8 +85,12 @@ class ChromaIndex(EmbeddingIndex):
log.exception(f"Failed to parse document: {doc}")
continue
score = 1.0 / float(dist) if dist != 0 else float("inf")
if score < score_threshold:
continue
chunks.append(chunk)
scores.append(1.0 / float(dist))
scores.append(score)
return QueryChunksResponse(chunks=chunks, scores=scores)
@ -92,6 +105,17 @@ class ChromaIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in Chroma")
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in Chroma")
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__(
@ -174,3 +198,67 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
index = VectorDBWithIndex(vector_db, ChromaIndex(self.client, collection), self.inference_api)
self.cache[vector_db_id] = index
return index
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")

View file

@ -16,7 +16,16 @@ from pymilvus import MilvusClient
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import (
@ -94,6 +103,17 @@ class MilvusIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in Milvus")
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in Milvus")
class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
def __init__(
@ -177,6 +197,70 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
return await index.query_chunks(query, params)
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Milvus")
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
"""Generate a unique chunk ID using a hash of document ID and chunk text."""

View file

@ -116,7 +116,7 @@ class PGVectorIndex(EmbeddingIndex):
scores = []
for doc, dist in results:
chunks.append(Chunk(**doc))
scores.append(1.0 / float(dist))
scores.append(1.0 / float(dist) if dist != 0 else float("inf"))
return QueryChunksResponse(chunks=chunks, scores=scores)
@ -128,6 +128,17 @@ class PGVectorIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in PGVector")
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in PGVector")
async def delete(self):
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")

View file

@ -14,7 +14,16 @@ from qdrant_client.models import PointStruct
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
from llama_stack.apis.vector_io import (
Chunk,
QueryChunksResponse,
VectorIO,
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import VectorStoreChunkingStrategy, VectorStoreFileObject
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
from llama_stack.providers.utils.memory.vector_store import (
@ -103,6 +112,17 @@ class QdrantIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in Qdrant")
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in Qdrant")
async def delete(self):
await self.client.delete_collection(collection_name=self.collection_name)
@ -178,3 +198,67 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
raise ValueError(f"Vector DB {vector_db_id} not found")
return await index.query_chunks(query, params)
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")

View file

@ -76,7 +76,7 @@ class WeaviateIndex(EmbeddingIndex):
continue
chunks.append(chunk)
scores.append(1.0 / doc.metadata.distance)
scores.append(1.0 / doc.metadata.distance if doc.metadata.distance != 0 else float("inf"))
return QueryChunksResponse(chunks=chunks, scores=scores)
@ -92,6 +92,17 @@ class WeaviateIndex(EmbeddingIndex):
) -> QueryChunksResponse:
raise NotImplementedError("Keyword search is not supported in Weaviate")
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError("Hybrid search is not supported in Weaviate")
class WeaviateVectorIOAdapter(
VectorIO,

View file

@ -4,8 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import struct
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
@ -37,7 +35,6 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingData,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
@ -48,6 +45,7 @@ from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
b64_encode_openai_embeddings_response,
convert_message_to_openai_dict_new,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
@ -293,16 +291,7 @@ class LiteLLMOpenAIMixin(
)
# Convert response to OpenAI format
data = []
for i, embedding_data in enumerate(response["data"]):
# we encode to base64 if the encoding format is base64 in the request
if encoding_format == "base64":
byte_data = b"".join(struct.pack("f", f) for f in embedding_data["embedding"])
embedding = base64.b64encode(byte_data).decode("utf-8")
else:
embedding = embedding_data["embedding"]
data.append(OpenAIEmbeddingData(embedding=embedding, index=i))
data = b64_encode_openai_embeddings_response(response.data, encoding_format)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response["usage"]["prompt_tokens"],
@ -336,6 +325,7 @@ class LiteLLMOpenAIMixin(
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
model_obj = await self.model_store.get_model(model)
params = await prepare_openai_completion_params(

View file

@ -3,8 +3,10 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import json
import logging
import struct
import time
import uuid
import warnings
@ -108,6 +110,7 @@ from llama_stack.apis.inference.inference import (
OpenAIChatCompletion,
OpenAICompletion,
OpenAICompletionChoice,
OpenAIEmbeddingData,
OpenAIMessageParam,
OpenAIResponseFormatParam,
ToolConfig,
@ -1287,6 +1290,7 @@ class OpenAICompletionToLlamaStackMixin:
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
if stream:
raise ValueError(f"{self.__class__.__name__} doesn't support streaming openai completions")
@ -1483,3 +1487,55 @@ class OpenAIChatCompletionToLlamaStackMixin:
model=model,
object="chat.completion",
)
def prepare_openai_embeddings_params(
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
):
if model is None:
raise ValueError("Model must be provided for embeddings")
input_list = [input] if isinstance(input, str) else input
params: dict[str, Any] = {
"model": model,
"input": input_list,
}
if encoding_format is not None:
params["encoding_format"] = encoding_format
if dimensions is not None:
params["dimensions"] = dimensions
if user is not None:
params["user"] = user
return params
def b64_encode_openai_embeddings_response(
response_data: dict, encoding_format: str | None = "float"
) -> list[OpenAIEmbeddingData]:
"""
Process the OpenAI embeddings response to encode the embeddings in base64 format if specified.
"""
data = []
for i, embedding_data in enumerate(response_data):
if encoding_format == "base64":
byte_array = bytearray()
for embedding_value in embedding_data.embedding:
byte_array.extend(struct.pack("f", float(embedding_value)))
response_embedding = base64.b64encode(byte_array).decode("utf-8")
else:
response_embedding = embedding_data.embedding
data.append(
OpenAIEmbeddingData(
embedding=response_embedding,
index=i,
)
)
return data

View file

@ -0,0 +1,482 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import mimetypes
import time
import uuid
from abc import ABC, abstractmethod
from typing import Any
from llama_stack.apis.files import Files
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
QueryChunksResponse,
VectorStoreContent,
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.apis.vector_io.vector_io import (
Chunk,
VectorStoreChunkingStrategy,
VectorStoreChunkingStrategyAuto,
VectorStoreChunkingStrategyStatic,
VectorStoreFileLastError,
VectorStoreFileObject,
)
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
logger = logging.getLogger(__name__)
# Constants for OpenAI vector stores
CHUNK_MULTIPLIER = 5
class OpenAIVectorStoreMixin(ABC):
"""
Mixin class that provides common OpenAI Vector Store API implementation.
Providers need to implement the abstract storage methods and maintain
an openai_vector_stores in-memory cache.
"""
# These should be provided by the implementing class
openai_vector_stores: dict[str, dict[str, Any]]
files_api: Files | None
@abstractmethod
async def _save_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Save vector store metadata to persistent storage."""
pass
@abstractmethod
async def _load_openai_vector_stores(self) -> dict[str, dict[str, Any]]:
"""Load all vector store metadata from persistent storage."""
pass
@abstractmethod
async def _update_openai_vector_store(self, store_id: str, store_info: dict[str, Any]) -> None:
"""Update vector store metadata in persistent storage."""
pass
@abstractmethod
async def _delete_openai_vector_store_from_storage(self, store_id: str) -> None:
"""Delete vector store metadata from persistent storage."""
pass
@abstractmethod
async def register_vector_db(self, vector_db: VectorDB) -> None:
"""Register a vector database (provider-specific implementation)."""
pass
@abstractmethod
async def unregister_vector_db(self, vector_db_id: str) -> None:
"""Unregister a vector database (provider-specific implementation)."""
pass
@abstractmethod
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
"""Insert chunks into a vector database (provider-specific implementation)."""
pass
@abstractmethod
async def query_chunks(
self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None
) -> QueryChunksResponse:
"""Query chunks from a vector database (provider-specific implementation)."""
pass
async def openai_create_vector_store(
self,
name: str,
file_ids: list[str] | None = None,
expires_after: dict[str, Any] | None = None,
chunking_strategy: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
embedding_model: str | None = None,
embedding_dimension: int | None = 384,
provider_id: str | None = None,
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
"""Creates a vector store."""
# store and vector_db have the same id
store_id = name or str(uuid.uuid4())
created_at = int(time.time())
if provider_id is None:
raise ValueError("Provider ID is required")
if embedding_model is None:
raise ValueError("Embedding model is required")
# Use provided embedding dimension or default to 384
if embedding_dimension is None:
raise ValueError("Embedding dimension is required")
provider_vector_db_id = provider_vector_db_id or store_id
vector_db = VectorDB(
identifier=store_id,
embedding_dimension=embedding_dimension,
embedding_model=embedding_model,
provider_id=provider_id,
provider_resource_id=provider_vector_db_id,
)
# Register the vector DB
await self.register_vector_db(vector_db)
# Create OpenAI vector store metadata
store_info = {
"id": store_id,
"object": "vector_store",
"created_at": created_at,
"name": store_id,
"usage_bytes": 0,
"file_counts": {},
"status": "completed",
"expires_after": expires_after,
"expires_at": None,
"last_active_at": created_at,
"file_ids": file_ids or [],
"chunking_strategy": chunking_strategy,
}
# Add provider information to metadata if provided
metadata = metadata or {}
if provider_id:
metadata["provider_id"] = provider_id
if provider_vector_db_id:
metadata["provider_vector_db_id"] = provider_vector_db_id
store_info["metadata"] = metadata
# Save to persistent storage (provider-specific)
await self._save_openai_vector_store(store_id, store_info)
# Store in memory cache
self.openai_vector_stores[store_id] = store_info
return VectorStoreObject(
id=store_id,
created_at=created_at,
name=store_id,
usage_bytes=0,
file_counts={},
status="completed",
expires_after=expires_after,
expires_at=None,
last_active_at=created_at,
metadata=metadata,
)
async def openai_list_vector_stores(
self,
limit: int | None = 20,
order: str | None = "desc",
after: str | None = None,
before: str | None = None,
) -> VectorStoreListResponse:
"""Returns a list of vector stores."""
limit = limit or 20
order = order or "desc"
# Get all vector stores
all_stores = list(self.openai_vector_stores.values())
# Sort by created_at
reverse_order = order == "desc"
all_stores.sort(key=lambda x: x["created_at"], reverse=reverse_order)
# Apply cursor-based pagination
if after:
after_index = next((i for i, store in enumerate(all_stores) if store["id"] == after), -1)
if after_index >= 0:
all_stores = all_stores[after_index + 1 :]
if before:
before_index = next((i for i, store in enumerate(all_stores) if store["id"] == before), len(all_stores))
all_stores = all_stores[:before_index]
# Apply limit
limited_stores = all_stores[:limit]
# Convert to VectorStoreObject instances
data = [VectorStoreObject(**store) for store in limited_stores]
# Determine pagination info
has_more = len(all_stores) > limit
first_id = data[0].id if data else None
last_id = data[-1].id if data else None
return VectorStoreListResponse(
data=data,
has_more=has_more,
first_id=first_id,
last_id=last_id,
)
async def openai_retrieve_vector_store(
self,
vector_store_id: str,
) -> VectorStoreObject:
"""Retrieves a vector store."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
store_info = self.openai_vector_stores[vector_store_id]
return VectorStoreObject(**store_info)
async def openai_update_vector_store(
self,
vector_store_id: str,
name: str | None = None,
expires_after: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> VectorStoreObject:
"""Modifies a vector store."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
store_info = self.openai_vector_stores[vector_store_id].copy()
# Update fields if provided
if name is not None:
store_info["name"] = name
if expires_after is not None:
store_info["expires_after"] = expires_after
if metadata is not None:
store_info["metadata"] = metadata
# Update last_active_at
store_info["last_active_at"] = int(time.time())
# Save to persistent storage (provider-specific)
await self._update_openai_vector_store(vector_store_id, store_info)
# Update in-memory cache
self.openai_vector_stores[vector_store_id] = store_info
return VectorStoreObject(**store_info)
async def openai_delete_vector_store(
self,
vector_store_id: str,
) -> VectorStoreDeleteResponse:
"""Delete a vector store."""
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
# Delete from persistent storage (provider-specific)
await self._delete_openai_vector_store_from_storage(vector_store_id)
# Delete from in-memory cache
del self.openai_vector_stores[vector_store_id]
# Also delete the underlying vector DB
try:
await self.unregister_vector_db(vector_store_id)
except Exception as e:
logger.warning(f"Failed to delete underlying vector DB {vector_store_id}: {e}")
return VectorStoreDeleteResponse(
id=vector_store_id,
deleted=True,
)
async def openai_search_vector_store(
self,
vector_store_id: str,
query: str | list[str],
filters: dict[str, Any] | None = None,
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
# search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
) -> VectorStoreSearchResponsePage:
"""Search for chunks in a vector store."""
# TODO: Add support in the API for this
search_mode = "vector"
max_num_results = max_num_results or 10
if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found")
if isinstance(query, list):
search_query = " ".join(query)
else:
search_query = query
try:
score_threshold = ranking_options.get("score_threshold", 0.0) if ranking_options else 0.0
params = {
"max_chunks": max_num_results * CHUNK_MULTIPLIER,
"score_threshold": score_threshold,
"mode": search_mode,
}
# TODO: Add support for ranking_options.ranker
response = await self.query_chunks(
vector_db_id=vector_store_id,
query=search_query,
params=params,
)
# Convert response to OpenAI format
data = []
for chunk, score in zip(response.chunks, response.scores, strict=False):
# Apply score based filtering
if score < score_threshold:
continue
# Apply filters if provided
if filters:
# Simple metadata filtering
if not self._matches_filters(chunk.metadata, filters):
continue
# content is InterleavedContent
if isinstance(chunk.content, str):
content = [
VectorStoreContent(
type="text",
text=chunk.content,
)
]
elif isinstance(chunk.content, list):
# TODO: Add support for other types of content
content = [
VectorStoreContent(
type="text",
text=item.text,
)
for item in chunk.content
if item.type == "text"
]
else:
if chunk.content.type != "text":
raise ValueError(f"Unsupported content type: {chunk.content.type}")
content = [
VectorStoreContent(
type="text",
text=chunk.content.text,
)
]
response_data_item = VectorStoreSearchResponse(
file_id=chunk.metadata.get("file_id", ""),
filename=chunk.metadata.get("filename", ""),
score=score,
attributes=chunk.metadata,
content=content,
)
data.append(response_data_item)
if len(data) >= max_num_results:
break
return VectorStoreSearchResponsePage(
search_query=search_query,
data=data,
has_more=False, # For simplicity, we don't implement pagination here
next_page=None,
)
except Exception as e:
logger.error(f"Error searching vector store {vector_store_id}: {e}")
# Return empty results on error
return VectorStoreSearchResponsePage(
search_query=search_query,
data=[],
has_more=False,
next_page=None,
)
def _matches_filters(self, metadata: dict[str, Any], filters: dict[str, Any]) -> bool:
"""Check if metadata matches the provided filters."""
for key, value in filters.items():
if key not in metadata:
return False
if metadata[key] != value:
return False
return True
async def openai_attach_file_to_vector_store(
self,
vector_store_id: str,
file_id: str,
attributes: dict[str, Any] | None = None,
chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject:
attributes = attributes or {}
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
vector_store_file_object = VectorStoreFileObject(
id=file_id,
attributes=attributes,
chunking_strategy=chunking_strategy,
created_at=int(time.time()),
status="in_progress",
vector_store_id=vector_store_id,
)
if not hasattr(self, "files_api") or not self.files_api:
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message="Files API is not available",
)
return vector_store_file_object
if isinstance(chunking_strategy, VectorStoreChunkingStrategyStatic):
max_chunk_size_tokens = chunking_strategy.static.max_chunk_size_tokens
chunk_overlap_tokens = chunking_strategy.static.chunk_overlap_tokens
else:
# Default values from OpenAI API spec
max_chunk_size_tokens = 800
chunk_overlap_tokens = 400
try:
file_response = await self.files_api.openai_retrieve_file(file_id)
mime_type, _ = mimetypes.guess_type(file_response.filename)
content_response = await self.files_api.openai_retrieve_file_content(file_id)
content = content_from_data_and_mime_type(content_response.body, mime_type)
chunks = make_overlapped_chunks(
file_id,
content,
max_chunk_size_tokens,
chunk_overlap_tokens,
attributes,
)
if not chunks:
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message="No chunks were generated from the file",
)
return vector_store_file_object
await self.insert_chunks(
vector_db_id=vector_store_id,
chunks=chunks,
)
except Exception as e:
logger.error(f"Error attaching file to vector store: {e}")
vector_store_file_object.status = "failed"
vector_store_file_object.last_error = VectorStoreFileLastError(
code="server_error",
message=str(e),
)
return vector_store_file_object
vector_store_file_object.status = "completed"
return vector_store_file_object

View file

@ -32,6 +32,10 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
log = logging.getLogger(__name__)
# Constants for reranker types
RERANKER_TYPE_RRF = "rrf"
RERANKER_TYPE_WEIGHTED = "weighted"
def parse_pdf(data: bytes) -> str:
# For PDF and DOC/DOCX files, we can't reliably convert to string
@ -72,16 +76,18 @@ def content_from_data(data_url: str) -> str:
data = unquote(data)
encoding = parts["encoding"] or "utf-8"
data = data.encode(encoding)
return content_from_data_and_mime_type(data, parts["mimetype"], parts.get("encoding", None))
encoding = parts["encoding"]
if not encoding:
import chardet
detected = chardet.detect(data)
encoding = detected["encoding"]
def content_from_data_and_mime_type(data: bytes | str, mime_type: str | None, encoding: str | None = None) -> str:
if isinstance(data, bytes):
if not encoding:
import chardet
mime_type = parts["mimetype"]
mime_category = mime_type.split("/")[0]
detected = chardet.detect(data)
encoding = detected["encoding"]
mime_category = mime_type.split("/")[0] if mime_type else None
if mime_category == "text":
# For text-based files (including CSV, MD)
return data.decode(encoding)
@ -200,6 +206,18 @@ class EmbeddingIndex(ABC):
async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse:
raise NotImplementedError()
@abstractmethod
async def query_hybrid(
self,
embedding: NDArray,
query_string: str,
k: int,
score_threshold: float,
reranker_type: str,
reranker_params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
raise NotImplementedError()
@abstractmethod
async def delete(self):
raise NotImplementedError()
@ -243,10 +261,29 @@ class VectorDBWithIndex:
k = params.get("max_chunks", 3)
mode = params.get("mode")
score_threshold = params.get("score_threshold", 0.0)
# Get ranker configuration
ranker = params.get("ranker")
if ranker is None:
# Default to RRF with impact_factor=60.0
reranker_type = RERANKER_TYPE_RRF
reranker_params = {"impact_factor": 60.0}
else:
reranker_type = ranker.type
reranker_params = (
{"impact_factor": ranker.impact_factor} if ranker.type == RERANKER_TYPE_RRF else {"alpha": ranker.alpha}
)
query_string = interleaved_content_as_str(query)
if mode == "keyword":
return await self.index.query_keyword(query_string, k, score_threshold)
# Calculate embeddings for both vector and hybrid modes
embeddings_response = await self.inference_api.embeddings(self.vector_db.embedding_model, [query_string])
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
if mode == "hybrid":
return await self.index.query_hybrid(
query_vector, query_string, k, score_threshold, reranker_type, reranker_params
)
else:
embeddings_response = await self.inference_api.embeddings(self.vector_db.embedding_model, [query_string])
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
return await self.index.query_vector(query_vector, k, score_threshold)

View file

@ -23,6 +23,8 @@ distribution_spec:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
files:
- inline::localfs
post_training:
- inline::huggingface
tool_runtime:

View file

@ -13,6 +13,7 @@ from llama_stack.distribution.datatypes import (
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
from llama_stack.providers.inline.post_training.huggingface import HuggingFacePostTrainingConfig
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
@ -29,6 +30,7 @@ def get_distribution_template() -> DistributionTemplate:
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"files": ["inline::localfs"],
"post_training": ["inline::huggingface"],
"tool_runtime": [
"remote::brave-search",
@ -49,6 +51,11 @@ def get_distribution_template() -> DistributionTemplate:
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
files_provider = Provider(
provider_id="meta-reference-files",
provider_type="inline::localfs",
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
posttraining_provider = Provider(
provider_id="huggingface",
provider_type="inline::huggingface",
@ -98,6 +105,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": [inference_provider],
"vector_io": [vector_io_provider_faiss],
"files": [files_provider],
"post_training": [posttraining_provider],
},
default_models=[inference_model, embedding_model],
@ -107,6 +115,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": [inference_provider],
"vector_io": [vector_io_provider_faiss],
"files": [files_provider],
"post_training": [posttraining_provider],
"safety": [
Provider(

View file

@ -4,6 +4,7 @@ apis:
- agents
- datasetio
- eval
- files
- inference
- post_training
- safety
@ -84,6 +85,14 @@ providers:
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:~/.llama/distributions/ollama/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/files_metadata.db
post_training:
- provider_id: huggingface
provider_type: inline::huggingface

View file

@ -4,6 +4,7 @@ apis:
- agents
- datasetio
- eval
- files
- inference
- post_training
- safety
@ -82,6 +83,14 @@ providers:
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:~/.llama/distributions/ollama/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/files_metadata.db
post_training:
- provider_id: huggingface
provider_type: inline::huggingface

View file

@ -17,6 +17,8 @@ distribution_spec:
- inline::sqlite-vec
- remote::chromadb
- remote::pgvector
files:
- inline::localfs
safety:
- inline::llama-guard
agents:

View file

@ -4,6 +4,7 @@ apis:
- agents
- datasetio
- eval
- files
- inference
- safety
- scoring
@ -75,6 +76,14 @@ providers:
db: ${env.PGVECTOR_DB:}
user: ${env.PGVECTOR_USER:}
password: ${env.PGVECTOR_PASSWORD:}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/starter}/files_metadata.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard

View file

@ -12,6 +12,7 @@ from llama_stack.distribution.datatypes import (
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
@ -134,6 +135,7 @@ def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ([p.provider_type for p in inference_providers] + ["inline::sentence-transformers"]),
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
"files": ["inline::localfs"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
@ -170,6 +172,11 @@ def get_distribution_template() -> DistributionTemplate:
),
),
]
files_provider = Provider(
provider_id="meta-reference-files",
provider_type="inline::localfs",
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
@ -212,6 +219,7 @@ def get_distribution_template() -> DistributionTemplate:
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
"files": [files_provider],
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,