unit test update, warnings for unsupported parameters

This commit is contained in:
Ubuntu 2025-03-12 14:17:26 +00:00 committed by raspawar
parent 152261a249
commit bd9b6a6e00
5 changed files with 413 additions and 429 deletions

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import os
import warnings
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field
@ -15,27 +16,27 @@ class NvidiaPostTrainingConfig(BaseModel):
api_key: Optional[str] = Field(
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
description="The NVIDIA API key, only needed of using the hosted service",
description="The NVIDIA API key.",
)
user_id: Optional[str] = Field(
default_factory=lambda: os.getenv("NVIDIA_USER_ID", "llama-stack-user"),
description="The NVIDIA user ID, only needed of using the hosted service",
description="The NVIDIA user ID.",
)
dataset_namespace: Optional[str] = Field(
default_factory=lambda: os.getenv("NVIDIA_DATASET_NAMESPACE", "default"),
description="The NVIDIA dataset namespace, only needed of using the hosted service",
description="The NVIDIA dataset namespace.",
)
access_policies: Optional[dict] = Field(
default_factory=lambda: os.getenv("NVIDIA_ACCESS_POLICIES", {}),
description="The NVIDIA access policies, only needed of using the hosted service",
description="The NVIDIA access policies.",
)
project_id: Optional[str] = Field(
default_factory=lambda: os.getenv("NVIDIA_PROJECT_ID", "test-project"),
description="The NVIDIA project ID, only needed of using the hosted service",
description="The NVIDIA project ID.",
)
# ToDO: validate this, add default value
@ -54,11 +55,35 @@ class NvidiaPostTrainingConfig(BaseModel):
description="Maximum number of retries for the NVIDIA Post Training API",
)
# ToDo: validate this, add default value
output_model_dir: str = Field(
default_factory=lambda: os.getenv("NVIDIA_OUTPUT_MODEL_DIR", "test-example-model@v1"),
description="Directory to save the output model",
)
# warning for default values
def __post_init__(self):
default_values = []
if os.getenv("NVIDIA_OUTPUT_MODEL_DIR") is None:
default_values.append("output_model_dir='test-example-model@v1'")
if os.getenv("NVIDIA_PROJECT_ID") is None:
default_values.append("project_id='test-project'")
if os.getenv("NVIDIA_USER_ID") is None:
default_values.append("user_id='llama-stack-user'")
if os.getenv("NVIDIA_DATASET_NAMESPACE") is None:
default_values.append("dataset_namespace='default'")
if os.getenv("NVIDIA_ACCESS_POLICIES") is None:
default_values.append("access_policies='{}'")
if os.getenv("NVIDIA_CUSTOMIZER_URL") is None:
default_values.append("customizer_url='http://nemo.test'")
if default_values:
warnings.warn(
f"Using default values: {', '.join(default_values)}. \
Please set the environment variables to avoid this default behavior.",
stacklevel=2,
)
@classmethod
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
return {

View file

@ -3,6 +3,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import warnings
from datetime import datetime
from typing import Any, Dict, List, Literal, Optional
@ -190,6 +191,13 @@ class NvidiaPostTrainingAdapter:
job_uuid: str - Unique identifier for the job
hyperparam_search_config: Dict[str, Any] - Configuration for hyperparameter search
logger_config: Dict[str, Any] - Configuration for logging
Environment Variables:
- NVIDIA_PROJECT_ID: ID of the project
- NVIDIA_USER_ID: ID of the user
- NVIDIA_ACCESS_POLICIES: Access policies for the project
- NVIDIA_DATASET_NAMESPACE: Namespace of the dataset
- NVIDIA_OUTPUT_MODEL_DIR: Directory to save the output model
"""
# map model to nvidia model name
model_mapping = {
@ -198,9 +206,30 @@ class NvidiaPostTrainingAdapter:
}
nvidia_model = model_mapping.get(model, model)
# Get output model directory from config
# Check for unsupported parameters
if checkpoint_dir or hyperparam_search_config or logger_config:
warnings.warn(
"Parameters: {} not supported atm, will be ignored".format(
checkpoint_dir,
)
)
def warn_unsupported_params(config_dict: Dict[str, Any], supported_keys: List[str], config_name: str) -> None:
"""Helper function to warn about unsupported parameters in a config dictionary."""
unsupported_params = [k for k in config_dict.keys() if k not in supported_keys]
if unsupported_params:
warnings.warn(f"Parameters: {unsupported_params} in {config_name} not supported and will be ignored.")
# Check for unsupported parameters
warn_unsupported_params(training_config, ["n_epochs", "data_config", "optimizer_config"], "TrainingConfig")
warn_unsupported_params(training_config["data_config"], ["dataset_id", "batch_size"], "DataConfig")
warn_unsupported_params(training_config["optimizer_config"], ["lr"], "OptimizerConfig")
output_model = self.config.output_model_dir
if output_model == "default":
warnings.warn("output_model_dir set via default value, will be ignored")
# Prepare base job configuration
job_config = {
"config": nvidia_model,
@ -226,6 +255,7 @@ class NvidiaPostTrainingAdapter:
# Extract LoRA-specific parameters
lora_config = {k: v for k, v in algorithm_config.items() if k != "type"}
job_config["hyperparameters"]["lora"] = lora_config
warn_unsupported_params(lora_config, ["adapter_dim", "adapter_dropout"], "LoRA config")
else:
raise NotImplementedError(f"Unsupported algorithm config: {algorithm_config}")

View file

@ -13,47 +13,13 @@
import logging
from typing import Tuple
import httpx
from .config import NvidiaPostTrainingConfig
logger = logging.getLogger(__name__)
async def _get_health(url: str) -> Tuple[bool, bool]:
"""
Query {url}/v1/health/{live,ready} to check if the server is running and ready
Args:
url (str): URL of the server
Returns:
Tuple[bool, bool]: (is_live, is_ready)
"""
async with httpx.AsyncClient() as client:
live = await client.get(f"{url}/v1/health/live")
ready = await client.get(f"{url}/v1/health/ready")
return live.status_code == 200, ready.status_code == 200
# ToDo: implement post health checks for customizer are enabled
async def _get_health(url: str) -> Tuple[bool, bool]: ...
async def check_health(config: NvidiaPostTrainingConfig) -> None:
"""
Check if the server is running and ready
Args:
url (str): URL of the server
Raises:
RuntimeError: If the server is not running or ready
"""
if not _is_nvidia_hosted(config):
logger.info("Checking NVIDIA NIM health...")
try:
is_live, is_ready = await _get_health(config.url)
if not is_live:
raise ConnectionError("NVIDIA NIM is not running")
if not is_ready:
raise ConnectionError("NVIDIA NIM is not ready")
# TODO(mf): should we wait for the server to be ready?
except httpx.ConnectError as e:
raise ConnectionError(f"Failed to connect to NVIDIA NIM: {e}") from e
async def check_health(config: NvidiaPostTrainingConfig) -> None: ...

View file

@ -1,386 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import unittest
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig,
TrainingConfigDataConfig,
TrainingConfigOptimizerConfig,
)
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
POST_TRAINING_PROVIDER_TYPES = ["remote::nvidia"]
@pytest.mark.integration
@pytest.fixture(scope="session")
def post_training_provider_available(llama_stack_client):
providers = llama_stack_client.providers.list()
post_training_providers = [p for p in providers if p.provider_type in POST_TRAINING_PROVIDER_TYPES]
return len(post_training_providers) > 0
@pytest.mark.integration
def test_post_training_provider_registration(llama_stack_client, post_training_provider_available):
"""Check if post_training is in the api list.
This is a sanity check to ensure the provider is registered."""
if not post_training_provider_available:
pytest.skip("post training provider not available")
providers = llama_stack_client.providers.list()
post_training_providers = [p for p in providers if p.provider_type in POST_TRAINING_PROVIDER_TYPES]
assert len(post_training_providers) > 0
class TestNvidiaPostTraining(unittest.TestCase):
def setUp(self):
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
os.environ["NVIDIA_BASE_URL"] = "http://nim.test"
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia")
self.llama_stack_client.initialize = MagicMock(return_value=None)
_ = self.llama_stack_client.initialize()
@patch("requests.post")
def test_supervised_fine_tune(self, mock_post):
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"config": {
"schema_version": "1.0",
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.569837",
"custom_fields": {},
"name": "meta-llama/Llama-3.1-8B-Instruct",
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
"model_path": "llama-3_1-8b-instruct",
"training_types": [],
"finetuning_types": ["lora"],
"precision": "bf16",
"num_gpus": 4,
"num_nodes": 1,
"micro_batch_size": 1,
"tensor_parallel_size": 1,
"max_seq_length": 4096,
},
"dataset": {
"schema_version": "1.0",
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.542660",
"custom_fields": {},
"name": "default/sample-basic-test",
"version_id": "main",
"version_tags": [],
},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16},
},
"output_model": "default/job-1234",
"status": "created",
"project": "default",
"custom_fields": {},
"ownership": {"created_by": "me", "access_policies": {}},
}
mock_post.return_value = mock_response
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
with patch.object(
self.llama_stack_client.post_training,
"supervised_fine_tune",
return_value={
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "created",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"dataset_id": "sample-basic-test",
"output_model": "default/job-1234",
},
):
training_job = self.llama_stack_client.post_training.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
self.assertEqual(training_job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
self.assertEqual(training_job["status"], "created")
self.assertEqual(training_job["model"], "meta-llama/Llama-3.1-8B-Instruct")
self.assertEqual(training_job["dataset_id"], "sample-basic-test")
@patch("requests.get")
def test_get_job_status(self, mock_get):
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = {
"created_at": "2024-12-09T04:06:28.580220",
"updated_at": "2024-12-09T04:21:19.852832",
"status": "completed",
"steps_completed": 1210,
"epochs_completed": 2,
"percentage_done": 100.0,
"best_epoch": 2,
"train_loss": 1.718016266822815,
"val_loss": 1.8661999702453613,
}
mock_get.return_value = mock_response
with patch.object(
self.llama_stack_client.post_training.job,
"status",
return_value={
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "completed",
"created_at": "2024-12-09T04:06:28.580220",
"updated_at": "2024-12-09T04:21:19.852832",
"steps_completed": 1210,
"epochs_completed": 2,
"percentage_done": 100.0,
"best_epoch": 2,
"train_loss": 1.718016266822815,
"val_loss": 1.8661999702453613,
},
):
status = self.llama_stack_client.post_training.job.status("cust-JGTaMbJMdqjJU8WbQdN9Q2")
self.assertEqual(status["status"], "completed")
self.assertEqual(status["steps_completed"], 1210)
self.assertEqual(status["epochs_completed"], 2)
self.assertEqual(status["percentage_done"], 100.0)
self.assertEqual(status["best_epoch"], 2)
self.assertEqual(status["train_loss"], 1.718016266822815)
self.assertEqual(status["val_loss"], 1.8661999702453613)
@patch("requests.get")
def test_get_job(self, mock_get):
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.json.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:21:19.852832",
"config": {"name": "meta-llama/Llama-3.1-8B-Instruct", "base_model": "meta-llama/Llama-3.1-8B-Instruct"},
"dataset": {"name": "default/sample-basic-test"},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16},
},
"output_model": "default/job-1234",
"status": "completed",
"project": "default",
}
mock_get.return_value = mock_response
client = MagicMock()
with patch.object(
client.post_training,
"get_job",
return_value={
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "completed",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:21:19.852832",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"dataset_id": "sample-basic-test",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"adapter_dim": 16,
"output_model": "default/job-1234",
},
):
job = client.post_training.get_job("cust-JGTaMbJMdqjJU8WbQdN9Q2")
self.assertEqual(job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
self.assertEqual(job["status"], "completed")
self.assertEqual(job["model"], "meta-llama/Llama-3.1-8B-Instruct")
self.assertEqual(job["dataset_id"], "sample-basic-test")
self.assertEqual(job["batch_size"], 16)
self.assertEqual(job["epochs"], 2)
self.assertEqual(job["learning_rate"], 0.0001)
self.assertEqual(job["adapter_dim"], 16)
self.assertEqual(job["output_model"], "default/job-1234")
@patch("requests.delete")
def test_cancel_job(self, mock_delete):
mock_response = MagicMock()
mock_response.status_code = 200
mock_delete.return_value = mock_response
client = MagicMock()
with patch.object(client.post_training, "cancel_job", return_value=True):
result = client.post_training.cancel_job("cust-JGTaMbJMdqjJU8WbQdN9Q2")
self.assertTrue(result)
@pytest.mark.asyncio
@patch("aiohttp.ClientSession.post")
async def test_async_supervised_fine_tune(self, mock_post):
mock_response = MagicMock()
mock_response.status = 200
mock_response.json = AsyncMock(
return_value={
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "created",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"dataset_id": "sample-basic-test",
"output_model": "default/job-1234",
}
)
mock_post.return_value.__aenter__.return_value = mock_response
client = MagicMock()
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
with patch.object(
client.post_training,
"supervised_fine_tune_async",
AsyncMock(
return_value={
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "created",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"dataset_id": "sample-basic-test",
"output_model": "default/job-1234",
}
),
):
training_job = await client.post_training.supervised_fine_tune_async(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
self.assertEqual(training_job["id"], "cust-JGTaMbJMdqjJU8WbQdN9Q2")
self.assertEqual(training_job["status"], "created")
self.assertEqual(training_job["model"], "meta-llama/Llama-3.1-8B-Instruct")
self.assertEqual(training_job["dataset_id"], "sample-basic-test")
@pytest.mark.asyncio
@patch("aiohttp.ClientSession.post")
async def test_inference_with_fine_tuned_model(self, mock_post):
mock_response = MagicMock()
mock_response.status = 200
mock_response.json = AsyncMock(
return_value={
"id": "cmpl-123456",
"object": "text_completion",
"created": 1677858242,
"model": "job-1234",
"choices": [
{
"text": "The next GTC will take place in the middle of March, 2023.",
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
}
)
mock_post.return_value.__aenter__.return_value = mock_response
client = MagicMock()
with patch.object(
client.inference,
"completion",
AsyncMock(
return_value={
"id": "cmpl-123456",
"object": "text_completion",
"created": 1677858242,
"model": "job-1234",
"choices": [
{
"text": "The next GTC will take place in the middle of March, 2023.",
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
}
),
):
response = await client.inference.completion(
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
stream=False,
model_id="job-1234",
sampling_params={
"max_tokens": 128,
},
)
self.assertEqual(response["model"], "job-1234")
self.assertEqual(
response["choices"][0]["text"], "The next GTC will take place in the middle of March, 2023."
)
if __name__ == "__main__":
unittest.main()

View file

@ -0,0 +1,349 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import unittest
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
from llama_stack_client.types.post_training.job_status_response import JobStatusResponse
from llama_stack_client.types.post_training_job import PostTrainingJob
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig,
TrainingConfigDataConfig,
TrainingConfigOptimizerConfig,
)
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
class TestNvidiaPostTraining(unittest.TestCase):
def setUp(self):
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
os.environ["LLAMA_STACK_BASE_URL"] = "http://localhost:5002" # mocking llama stack base url
self.llama_stack_client = LlamaStackAsLibraryClient("nvidia")
_ = self.llama_stack_client.initialize()
## ToDo: post health checks for customizer are enabled, include test cases for NVIDIA_CUSTOMIZER_URL
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
"""Helper method to verify request details in mock calls."""
call_args = mock_call.call_args
if expected_method and expected_path:
if isinstance(call_args[0], tuple) and len(call_args[0]) == 2:
assert call_args[0] == (expected_method, expected_path)
else:
assert call_args[1]["method"] == expected_method
assert call_args[1]["path"] == expected_path
if expected_params:
assert call_args[1]["params"] == expected_params
if expected_json:
for key, value in expected_json.items():
assert call_args[1]["json"][key] == value
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_supervised_fine_tune(self, mock_make_request):
"""Test the supervised fine-tuning API call.
ToDo: add tests for env variables."""
mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"config": {
"schema_version": "1.0",
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.569837",
"custom_fields": {},
"name": "meta-llama/Llama-3.1-8B-Instruct",
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
"model_path": "llama-3_1-8b-instruct",
"training_types": [],
"finetuning_types": ["lora"],
"precision": "bf16",
"num_gpus": 4,
"num_nodes": 1,
"micro_batch_size": 1,
"tensor_parallel_size": 1,
"max_seq_length": 4096,
},
"dataset": {
"schema_version": "1.0",
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.542660",
"custom_fields": {},
"name": "sample-basic-test",
"version_id": "main",
"version_tags": [],
},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
},
"output_model": "default/job-1234",
"status": "created",
"project": "default",
"custom_fields": {},
"ownership": {"created_by": "me", "access_policies": {}},
}
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16, adapter_dropout=0.1)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
training_job = self.llama_stack_client.post_training.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
# check the output is a PostTrainingJob
# Note: Although the type is PostTrainingJob: llama_stack.apis.post_training.PostTrainingJob,
# post llama_stack_client initialization it gets translated to llama_stack_client.types.post_training_job.PostTrainingJob
assert isinstance(training_job, PostTrainingJob)
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.assert_called_once()
self._assert_request(
mock_make_request,
"POST",
"/v1/customization/jobs",
expected_json={
"config": "meta/llama-3.1-8b-instruct",
"dataset": {"name": "sample-basic-test", "namespace": ""},
"hyperparameters": {
"training_type": "sft",
"finetuning_type": "lora",
"epochs": 2,
"batch_size": 16,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
},
},
)
def test_supervised_fine_tune_with_qat(self):
algorithm_config = QatFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
# This will raise NotImplementedError since QAT is not supported
with self.assertRaises(NotImplementedError):
self.llama_stack_client.post_training.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_get_job_status(self, mock_make_request):
mock_make_request.return_value = {
"created_at": "2024-12-09T04:06:28.580220",
"updated_at": "2024-12-09T04:21:19.852832",
"status": "completed",
"steps_completed": 1210,
"epochs_completed": 2,
"percentage_done": 100.0,
"best_epoch": 2,
"train_loss": 1.718016266822815,
"val_loss": 1.8661999702453613,
}
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
status = self.llama_stack_client.post_training.job.status(job_uuid=job_id)
assert isinstance(status, JobStatusResponse)
assert status.status == "completed"
assert status.steps_completed == 1210
assert status.epochs_completed == 2
assert status.percentage_done == 100.0
assert status.best_epoch == 2
assert status.train_loss == 1.718016266822815
assert status.val_loss == 1.8661999702453613
mock_make_request.assert_called_once()
self._assert_request(
mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}
)
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_get_job(self, mock_make_request):
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.return_value = {
"data": [
{
"id": job_id,
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:21:19.852832",
"config": {
"name": "meta-llama/Llama-3.1-8B-Instruct",
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
},
"dataset": {"name": "default/sample-basic-test"},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
},
"output_model": "default/job-1234",
"status": "completed",
"project": "default",
}
]
}
jobs = self.llama_stack_client.post_training.job.list()
assert isinstance(jobs, list)
assert len(jobs) == 1
job = jobs[0]
assert job.job_uuid == job_id
assert job.status == "completed"
mock_make_request.assert_called_once()
self._assert_request(
mock_make_request,
"GET",
"/v1/customization/jobs",
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
)
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
def test_cancel_job(self, mock_make_request):
mock_make_request.return_value = {} # Empty response for successful cancellation
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
result = self.llama_stack_client.post_training.job.cancel(job_uuid=job_id)
assert result is None
# Verify the correct request was made
mock_make_request.assert_called_once()
self._assert_request(
mock_make_request, "POST", f"/v1/customization/jobs/{job_id}/cancel", expected_params={"job_id": job_id}
)
@pytest.mark.asyncio
@patch("llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request")
async def test_async_supervised_fine_tune(self, mock_make_request):
mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"status": "created",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"model": "meta-llama/Llama-3.1-8B-Instruct",
"dataset_id": "sample-basic-test",
"output_model": "default/job-1234",
}
algorithm_config = LoraFinetuningConfig(type="LoRA", adapter_dim=16, adapter_dropout=0.1)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
training_job = await self.llama_stack_client.post_training.supervised_fine_tune_async(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
assert training_job["job_uuid"] == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
assert training_job["status"] == "created"
mock_make_request.assert_called_once()
call_args = mock_make_request.call_args
assert call_args[1]["method"] == "POST"
assert call_args[1]["path"] == "/v1/customization/jobs"
@pytest.mark.asyncio
@patch("aiohttp.ClientSession.post")
async def test_inference_with_fine_tuned_model(self, mock_post):
mock_response = MagicMock()
mock_response.status = 200
mock_response.json = AsyncMock(
return_value={
"id": "cmpl-123456",
"object": "text_completion",
"created": 1677858242,
"model": "job-1234",
"choices": [
{
"text": "The next GTC will take place in the middle of March, 2023.",
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 100, "completion_tokens": 12, "total_tokens": 112},
}
)
mock_post.return_value.__aenter__.return_value = mock_response
response = await self.llama_stack_client.inference.completion(
content="When is the upcoming GTC event? GTC 2018 attracted over 8,400 attendees. Due to the COVID pandemic of 2020, GTC 2020 was converted to a digital event and drew roughly 59,000 registrants. The 2021 GTC keynote, which was streamed on YouTube on April 12, included a portion that was made with CGI using the Nvidia Omniverse real-time rendering platform. This next GTC will take place in the middle of March, 2023. Answer: ",
stream=False,
model_id="job-1234",
sampling_params={
"max_tokens": 128,
},
)
assert response["model"] == "job-1234"
assert response["choices"][0]["text"] == "The next GTC will take place in the middle of March, 2023."
if __name__ == "__main__":
unittest.main()