mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-01 14:00:01 +00:00
single type
This commit is contained in:
parent
bc71980769
commit
bec5a46915
3 changed files with 639 additions and 166 deletions
|
|
@ -68,110 +68,27 @@ class AggregationFunctionType(Enum):
|
|||
accuracy = "accuracy"
|
||||
|
||||
|
||||
# TODO(xiyan):
|
||||
# ============= OPTION 1: SEPARATE ScoringFnParamsType + ScoringFunctionType =============
|
||||
# class ScoringFnParamsType(Enum):
|
||||
# """
|
||||
# A type of scoring function parameters.
|
||||
class BasicScoringFnParamsCommon(BaseModel):
|
||||
"""
|
||||
:param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. If not provided, no aggregation will be performed.
|
||||
"""
|
||||
|
||||
# :cvar llm_as_judge: Provide judge model and prompt template.
|
||||
# :cvar regex_parser: Provide regexes to parse the answer from the generated response.
|
||||
# :cvar basic: Parameters for basic non-parameterized scoring function.
|
||||
# """
|
||||
|
||||
# custom_llm_as_judge = "custom_llm_as_judge"
|
||||
# regex_parser = "regex_parser"
|
||||
# basic = "basic"
|
||||
|
||||
|
||||
# @json_schema_type
|
||||
# class LLMAsJudgeScoringFnParams(BaseModel):
|
||||
# """
|
||||
# Parameters for a scoring function that uses a judge model to score the answer.
|
||||
|
||||
# :param judge_model: The model to use for scoring.
|
||||
# :param prompt_template: (Optional) The prompt template to use for scoring.
|
||||
# :param judge_score_regexes: (Optional) Regexes to extract the score from the judge model's response.
|
||||
# :param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. No aggregation for results is calculated if not provided.
|
||||
# """
|
||||
|
||||
# type: Literal["custom_llm_as_judge"] = "custom_llm_as_judge"
|
||||
# judge_model: str
|
||||
# prompt_template: Optional[str] = None
|
||||
# judge_score_regexes: Optional[List[str]] = Field(
|
||||
# description="Regexes to extract the answer from generated response",
|
||||
# default_factory=list,
|
||||
# )
|
||||
# aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
# description="Aggregation functions to apply to the scores of each row",
|
||||
# default_factory=list,
|
||||
# )
|
||||
|
||||
|
||||
# @json_schema_type
|
||||
# class RegexParserScoringFnParams(BaseModel):
|
||||
# """
|
||||
# Parameters for a scoring function that parses the answer from the generated response using regexes, and checks against the expected answer.
|
||||
|
||||
# :param parsing_regexes: Regexes to extract the answer from generated response
|
||||
# :param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. No aggregation for results is calculated if not provided.
|
||||
# """
|
||||
|
||||
# type: Literal["regex_parser"] = "regex_parser"
|
||||
# parsing_regexes: Optional[List[str]] = Field(
|
||||
# description="Regexes to extract the answer from generated response",
|
||||
# default_factory=list,
|
||||
# )
|
||||
# aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
# description="Aggregation functions to apply to the scores of each row",
|
||||
# default_factory=list,
|
||||
# )
|
||||
|
||||
|
||||
# @json_schema_type
|
||||
# class BasicScoringFnParams(BaseModel):
|
||||
# """
|
||||
# Parameters for a non-parameterized scoring function.
|
||||
|
||||
# :param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. No aggregation for results is calculated if not provided.
|
||||
# """
|
||||
|
||||
# type: Literal["basic"] = "basic"
|
||||
# aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
# description="Aggregation functions to apply to the scores of each row",
|
||||
# default_factory=list,
|
||||
# )
|
||||
|
||||
|
||||
# ScoringFnParams = register_schema(
|
||||
# Annotated[
|
||||
# Union[
|
||||
# LLMAsJudgeScoringFnParams,
|
||||
# RegexParserScoringFnParams,
|
||||
# BasicScoringFnParams,
|
||||
# ],
|
||||
# Field(discriminator="type"),
|
||||
# ],
|
||||
# name="ScoringFnParams",
|
||||
# )
|
||||
|
||||
# ============= END OF OPTION 1 =============
|
||||
|
||||
|
||||
# TODO(xiyan):
|
||||
# ============= OPTION 2: MERGE ScoringFnParamsType + ScoringFunctionType into ScoringFunctionType =============
|
||||
class RegexParserScoringFnParamsCommon(BaseModel):
|
||||
parsing_regexes: Optional[List[str]] = Field(
|
||||
description="Regexes to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
)
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
|
||||
class BasicScoringFnParamsCommon(BaseModel):
|
||||
class RegexParserScoringFnParamsCommon(BaseModel):
|
||||
"""
|
||||
:param parsing_regexes: (Optional) Regexes to extract the answer from generated response.
|
||||
:param aggregation_functions: (Optional) Aggregation functions to apply to the scores of each row. If not provided, no aggregation will be performed.
|
||||
"""
|
||||
|
||||
parsing_regexes: List[str] = Field(
|
||||
description="Regexes to extract the answer from generated response",
|
||||
default_factory=list,
|
||||
)
|
||||
aggregation_functions: Optional[List[AggregationFunctionType]] = Field(
|
||||
description="Aggregation functions to apply to the scores of each row",
|
||||
default_factory=list,
|
||||
|
|
@ -198,6 +115,51 @@ class SubsetOfcoringFnParams(BasicScoringFnParamsCommon):
|
|||
type: Literal["subset_of"] = "subset_of"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FactualityScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["factuality"] = "factuality"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FaithfulnessScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["faithfulness"] = "faithfulness"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AnswerCorrectnessScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["answer_correctness"] = "answer_correctness"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AnswerRelevancyScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["answer_relevancy"] = "answer_relevancy"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class AnswerSimilarityScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["answer_similarity"] = "answer_similarity"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ContextEntityRecallScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["context_entity_recall"] = "context_entity_recall"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ContextPrecisionScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["context_precision"] = "context_precision"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ContextRecallScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["context_recall"] = "context_recall"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ContextRelevancyScoringFnParams(BasicScoringFnParamsCommon):
|
||||
type: Literal["context_relevancy"] = "context_relevancy"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LLMAsJudgeScoringFnParams(BaseModel):
|
||||
type: Literal["custom_llm_as_judge"] = "custom_llm_as_judge"
|
||||
|
|
@ -221,6 +183,15 @@ ScoringFnParams = register_schema(
|
|||
RegexParserMathScoringFnParams,
|
||||
EqualityScoringFnParams,
|
||||
SubsetOfcoringFnParams,
|
||||
FactualityScoringFnParams,
|
||||
FaithfulnessScoringFnParams,
|
||||
AnswerCorrectnessScoringFnParams,
|
||||
AnswerRelevancyScoringFnParams,
|
||||
AnswerSimilarityScoringFnParams,
|
||||
ContextEntityRecallScoringFnParams,
|
||||
ContextPrecisionScoringFnParams,
|
||||
ContextRecallScoringFnParams,
|
||||
ContextRelevancyScoringFnParams,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
],
|
||||
|
|
@ -284,9 +255,8 @@ class ScoringFunctions(Protocol):
|
|||
@webmethod(route="/scoring-functions", method="POST")
|
||||
async def register_scoring_function(
|
||||
self,
|
||||
# TODO(xiyan): scoring_fn_type will not be needed for OPTION 2
|
||||
# scoring_fn_type: ScoringFunctionType,
|
||||
params: Optional[ScoringFnParams] = None,
|
||||
scoring_fn_type: ScoringFunctionType,
|
||||
params: ScoringFnParams = None,
|
||||
scoring_fn_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> ScoringFn:
|
||||
|
|
@ -294,7 +264,7 @@ class ScoringFunctions(Protocol):
|
|||
Register a new scoring function with given parameters.
|
||||
Only valid scoring function type that can be parameterized can be registered.
|
||||
|
||||
# :param scoring_fn_type: The type of scoring function to register.
|
||||
:param scoring_fn_type: The type of scoring function to register.
|
||||
:param params: The parameters for the scoring function.
|
||||
:param scoring_fn_id: (Optional) The ID of the scoring function to register. If not provided, a random ID will be generated.
|
||||
:param metadata: (Optional) Any additional metadata to be associated with the scoring function.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue