feat: consolidate most distros into "starter"

* Removes a bunch of distros
* Removed distros were added into the "starter" distribution
* Doc for "starter" has been added
* Partially reverts https://github.com/meta-llama/llama-stack/pull/2482
  since inference providers are disabled by default and can be turned on
  manually via env variable.
* Disables safety in starter distro

Closes: #2502
Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
Sébastien Han 2025-06-25 16:09:41 +02:00
parent 0ddb293d77
commit bedfea38c3
No known key found for this signature in database
127 changed files with 758 additions and 10771 deletions

View file

@ -85,45 +85,13 @@ The following command will allow you to see the available templates and their co
llama stack build --list-templates
```
```
------------------------------+-----------------------------------------------------------------------------+
| Template Name | Description |
+------------------------------+-----------------------------------------------------------------------------+
| hf-serverless | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| together | Use Together.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| vllm-gpu | Use a built-in vLLM engine for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| experimental-post-training | Experimental template for post training |
+------------------------------+-----------------------------------------------------------------------------+
| remote-vllm | Use (an external) vLLM server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| fireworks | Use Fireworks.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| tgi | Use (an external) TGI server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| bedrock | Use AWS Bedrock for running LLM inference and safety |
+------------------------------+-----------------------------------------------------------------------------+
| meta-reference-gpu | Use Meta Reference for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| nvidia | Use NVIDIA NIM for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| cerebras | Use Cerebras for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| ollama | Use (an external) Ollama server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| hf-endpoint | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
```
You may then pick a template to build your distribution with providers fitted to your liking.
For example, to build a distribution with TGI as the inference provider, you can run:
```
$ llama stack build --template tgi
$ llama stack build --template starter
...
You can now edit ~/.llama/distributions/llamastack-tgi/tgi-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-tgi/tgi-run.yaml`
You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml`
```
:::
:::{tab-item} Building from Scratch
@ -163,26 +131,7 @@ You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack
- The config file will be of contents like the ones in `llama_stack/templates/*build.yaml`.
```
$ cat llama_stack/templates/ollama/build.yaml
name: ollama
distribution_spec:
description: Like local, but use ollama for running LLM inference
providers:
inference: remote::ollama
memory: inline::faiss
safety: inline::llama-guard
agents: inline::meta-reference
telemetry: inline::meta-reference
image_name: ollama
image_type: conda
# If some providers are external, you can specify the path to the implementation
external_providers_dir: ~/.llama/providers.d
```
```
llama stack build --config llama_stack/templates/ollama/build.yaml
llama stack build --config llama_stack/templates/starter/build.yaml
```
:::
@ -248,11 +197,11 @@ Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podm
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.
```
llama stack build --template ollama --image-type container
llama stack build --template starter --image-type container
```
```
$ llama stack build --template ollama --image-type container
$ llama stack build --template starter --image-type container
...
Containerfile created successfully in /tmp/tmp.viA3a3Rdsg/ContainerfileFROM python:3.10-slim
...

View file

@ -6,7 +6,7 @@ This avoids the overhead of setting up a server.
```bash
# setup
uv pip install llama-stack
llama stack build --template ollama --image-type venv
llama stack build --template starter --image-type venv
```
```python

View file

@ -1,79 +0,0 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Bedrock Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-bedrock` distribution consists of the following provider configurations:
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::bedrock` |
| safety | `remote::bedrock` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
### Models
The following models are available by default:
- `meta.llama3-1-8b-instruct-v1:0 (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `meta.llama3-1-70b-instruct-v1:0 (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `meta.llama3-1-405b-instruct-v1:0 (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
### Prerequisite: API Keys
Make sure you have access to a AWS Bedrock API Key. You can get one by visiting [AWS Bedrock](https://aws.amazon.com/bedrock/).
## Running Llama Stack with AWS Bedrock
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-bedrock \
--port $LLAMA_STACK_PORT \
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN \
--env AWS_DEFAULT_REGION=$AWS_DEFAULT_REGION
```
### Via Conda
```bash
llama stack build --template bedrock --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN \
--env AWS_DEFAULT_REGION=$AWS_DEFAULT_REGION
```

View file

@ -1,67 +0,0 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Cerebras Distribution
The `llamastack/distribution-cerebras` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::cerebras`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `CEREBRAS_API_KEY`: Cerebras API Key (default: ``)
### Models
The following models are available by default:
- `llama3.1-8b (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `llama-3.3-70b (aliases: meta-llama/Llama-3.3-70B-Instruct)`
### Prerequisite: API Keys
Make sure you have access to a Cerebras API Key. You can get one by visiting [cloud.cerebras.ai](https://cloud.cerebras.ai/).
## Running Llama Stack with Cerebras
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-cerebras \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```
### Via Conda
```bash
llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
--port 8321 \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```

View file

@ -1,86 +0,0 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Fireworks Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-fireworks` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| files | `inline::localfs` |
| inference | `remote::fireworks`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::wolfram-alpha`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `FIREWORKS_API_KEY`: Fireworks.AI API Key (default: ``)
### Models
The following models are available by default:
- `accounts/fireworks/models/llama-v3p1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `accounts/fireworks/models/llama-v3p1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `accounts/fireworks/models/llama-v3p1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `accounts/fireworks/models/llama-v3p2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `accounts/fireworks/models/llama-v3p2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `accounts/fireworks/models/llama-v3p2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `accounts/fireworks/models/llama-v3p3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `accounts/fireworks/models/llama-guard-3-8b (aliases: meta-llama/Llama-Guard-3-8B)`
- `accounts/fireworks/models/llama-guard-3-11b-vision (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
- `accounts/fireworks/models/llama4-scout-instruct-basic (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
- `accounts/fireworks/models/llama4-maverick-instruct-basic (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
- `nomic-ai/nomic-embed-text-v1.5 `
### Prerequisite: API Keys
Make sure you have access to a Fireworks API Key. You can get one by visiting [fireworks.ai](https://fireworks.ai/).
## Running Llama Stack with Fireworks
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-fireworks \
--port $LLAMA_STACK_PORT \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
```
### Via Conda
```bash
llama stack build --template fireworks --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
```

View file

@ -1,82 +0,0 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Groq Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-groq` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::groq` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` |
| vector_io | `inline::faiss` |
### Environment Variables
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `GROQ_API_KEY`: Groq API Key (default: ``)
### Models
The following models are available by default:
- `groq/llama3-8b-8192 (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `groq/llama-3.1-8b-instant `
- `groq/llama3-70b-8192 (aliases: meta-llama/Llama-3-70B-Instruct)`
- `groq/llama-3.3-70b-versatile (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `groq/llama-3.2-3b-preview (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `groq/llama-4-scout-17b-16e-instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
- `groq/meta-llama/llama-4-scout-17b-16e-instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
- `groq/llama-4-maverick-17b-128e-instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
- `groq/meta-llama/llama-4-maverick-17b-128e-instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
### Prerequisite: API Keys
Make sure you have access to a Groq API Key. You can get one by visiting [Groq](https://api.groq.com/).
## Running Llama Stack with Groq
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-groq \
--port $LLAMA_STACK_PORT \
--env GROQ_API_KEY=$GROQ_API_KEY
```
### Via Conda
```bash
llama stack build --template groq --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env GROQ_API_KEY=$GROQ_API_KEY
```

View file

@ -1,177 +0,0 @@
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# NVIDIA Distribution
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `inline::localfs`, `remote::nvidia` |
| eval | `remote::nvidia` |
| inference | `remote::nvidia` |
| post_training | `remote::nvidia` |
| safety | `remote::nvidia` |
| scoring | `inline::basic` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `inline::rag-runtime` |
| vector_io | `inline::faiss` |
### Environment Variables
The following environment variables can be configured:
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
- `NVIDIA_APPEND_API_VERSION`: Whether to append the API version to the base_url (default: `True`)
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`)
- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`)
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`)
- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`)
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
- `NVIDIA_GUARDRAILS_CONFIG_ID`: NVIDIA Guardrail Configuration ID (default: `self-check`)
- `NVIDIA_EVALUATOR_URL`: URL for the NeMo Evaluator Service (default: `http://0.0.0.0:7331`)
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
### Models
The following models are available by default:
- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)`
- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)`
- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `meta/llama-3.3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
- `nvidia/nv-embedqa-e5-v5 `
- `nvidia/nv-embedqa-mistral-7b-v2 `
- `snowflake/arctic-embed-l `
## Prerequisites
### NVIDIA API Keys
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable.
### Deploy NeMo Microservices Platform
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/latest/about/index.html) for platform prerequisites and instructions to install and deploy the platform.
## Supported Services
Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints.
### Inference: NVIDIA NIM
NVIDIA NIM is used for running inference with registered models. There are two ways to access NVIDIA NIMs:
1. Hosted (default): Preview APIs hosted at https://integrate.api.nvidia.com (Requires an API key)
2. Self-hosted: NVIDIA NIMs that run on your own infrastructure.
The deployed platform includes the NIM Proxy microservice, which is the service that provides to access your NIMs (for example, to run inference on a model). Set the `NVIDIA_BASE_URL` environment variable to use your NVIDIA NIM Proxy deployment.
### Datasetio API: NeMo Data Store
The NeMo Data Store microservice serves as the default file storage solution for the NeMo microservices platform. It exposts APIs compatible with the Hugging Face Hub client (`HfApi`), so you can use the client to interact with Data Store. The `NVIDIA_DATASETS_URL` environment variable should point to your NeMo Data Store endpoint.
See the {repopath}`NVIDIA Datasetio docs::llama_stack/providers/remote/datasetio/nvidia/README.md` for supported features and example usage.
### Eval API: NeMo Evaluator
The NeMo Evaluator microservice supports evaluation of LLMs. Launching an Evaluation job with NeMo Evaluator requires an Evaluation Config (an object that contains metadata needed by the job). A Llama Stack Benchmark maps to an Evaluation Config, so registering a Benchmark creates an Evaluation Config in NeMo Evaluator. The `NVIDIA_EVALUATOR_URL` environment variable should point to your NeMo Microservices endpoint.
See the {repopath}`NVIDIA Eval docs::llama_stack/providers/remote/eval/nvidia/README.md` for supported features and example usage.
### Post-Training API: NeMo Customizer
The NeMo Customizer microservice supports fine-tuning models. You can reference {repopath}`this list of supported models::llama_stack/providers/remote/post_training/nvidia/models.py` that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint.
See the {repopath}`NVIDIA Post-Training docs::llama_stack/providers/remote/post_training/nvidia/README.md` for supported features and example usage.
### Safety API: NeMo Guardrails
The NeMo Guardrails microservice sits between your application and the LLM, and adds checks and content moderation to a model. The `GUARDRAILS_SERVICE_URL` environment variable should point to your NeMo Microservices endpoint.
See the {repopath}`NVIDIA Safety docs::llama_stack/providers/remote/safety/nvidia/README.md` for supported features and example usage.
## Deploying models
In order to use a registered model with the Llama Stack APIs, ensure the corresponding NIM is deployed to your environment. For example, you can use the NIM Proxy microservice to deploy `meta/llama-3.2-1b-instruct`.
Note: For improved inference speeds, we need to use NIM with `fast_outlines` guided decoding system (specified in the request body). This is the default if you deployed the platform with the NeMo Microservices Helm Chart.
```sh
# URL to NeMo NIM Proxy service
export NEMO_URL="http://nemo.test"
curl --location "$NEMO_URL/v1/deployment/model-deployments" \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"name": "llama-3.2-1b-instruct",
"namespace": "meta",
"config": {
"model": "meta/llama-3.2-1b-instruct",
"nim_deployment": {
"image_name": "nvcr.io/nim/meta/llama-3.2-1b-instruct",
"image_tag": "1.8.3",
"pvc_size": "25Gi",
"gpu": 1,
"additional_envs": {
"NIM_GUIDED_DECODING_BACKEND": "fast_outlines"
}
}
}
}'
```
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/latest/get-started/tutorials/deploy-nims.html) for more information on how to deploy a NIM and verify it's available for inference.
You can also remove a deployed NIM to free up GPU resources, if needed.
```sh
export NEMO_URL="http://nemo.test"
curl -X DELETE "$NEMO_URL/v1/deployment/model-deployments/meta/llama-3.1-8b-instruct"
```
## Running Llama Stack with NVIDIA
You can do this via Conda or venv (build code), or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-nvidia \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
```
### Via Conda
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
llama stack build --template nvidia --image-type conda
llama stack run ./run.yaml \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```
### Via venv
If you've set up your local development environment, you can also build the image using your local virtual environment.
```bash
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
llama stack build --template nvidia --image-type venv
llama stack run ./run.yaml \
--port 8321 \
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
--env INFERENCE_MODEL=$INFERENCE_MODEL
```
## Example Notebooks
For examples of how to use the NVIDIA Distribution to run inference, fine-tune, evaluate, and run safety checks on your LLMs, you can reference the example notebooks in {repopath}`docs/notebooks/nvidia`.

View file

@ -1,165 +0,0 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Ollama Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| files | `inline::localfs` |
| inference | `remote::ollama` |
| post_training | `inline::huggingface` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
## Setting up Ollama server
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
In order to load models, you can run:
```bash
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
```
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
```bash
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
```
## Running Llama Stack
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
export LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-ollama \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-ollama \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export LLAMA_STACK_PORT=8321
llama stack build --template ollama --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
### (Optional) Update Model Serving Configuration
```{note}
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/models.py) for the supported Ollama models.
```
To serve a new model with `ollama`
```bash
ollama run <model_name>
```
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
```
$ ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3.2:3b-instruct-fp16 195a8c01d91e 8.6 GB 100% GPU 9 minutes from now
```
To verify that the model served by ollama is correctly connected to Llama Stack server
```bash
$ llama-stack-client models list
Available Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ llm │ meta-llama/Llama-3.2-3B-Instruct │ llama3.2:3b-instruct-fp16 │ │ ollama │
└──────────────┴──────────────────────────────────────┴──────────────────────────────┴───────────┴─────────────┘
Total models: 1
```

View file

@ -1,297 +0,0 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Remote vLLM Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-remote-vllm` distribution consists of the following provider configurations:
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::vllm`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You can use this distribution if you want to run an independent vLLM server for inference.
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `INFERENCE_MODEL`: Inference model loaded into the vLLM server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100/v1`)
- `MAX_TOKENS`: Maximum number of tokens for generation (default: `4096`)
- `SAFETY_VLLM_URL`: URL of the vLLM server with the safety model (default: `http://host.docker.internal:5101/v1`)
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
## Setting up vLLM server
In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and
that we only use GPUs here for demonstration purposes. Note that if you run into issues, you can include the environment variable `--env VLLM_DEBUG_LOG_API_SERVER_RESPONSE=true` (available in vLLM v0.8.3 and above) in the `docker run` command to enable log response from API server for debugging.
### Setting up vLLM server on AMD GPU
AMD provides two main vLLM container options:
- rocm/vllm: Production-ready container
- rocm/vllm-dev: Development container with the latest vLLM features
Please check the [Blog about ROCm vLLM Usage](https://rocm.blogs.amd.com/software-tools-optimization/vllm-container/README.html) to get more details.
Here is a sample script to start a ROCm vLLM server locally via Docker:
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
export VLLM_DIMG="rocm/vllm-dev:main"
docker run \
--pull always \
--ipc=host \
--privileged \
--shm-size 16g \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--cap-add=SYS_PTRACE \
--cap-add=CAP_SYS_ADMIN \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HIP_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" \
-p $INFERENCE_PORT:$INFERENCE_PORT \
-v ~/.cache/huggingface:/root/.cache/huggingface \
$VLLM_DIMG \
python -m vllm.entrypoints.openai.api_server \
--model $INFERENCE_MODEL \
--port $INFERENCE_PORT
```
Note that you'll also need to set `--enable-auto-tool-choice` and `--tool-call-parser` to [enable tool calling in vLLM](https://docs.vllm.ai/en/latest/features/tool_calling.html).
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
```bash
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
export VLLM_DIMG="rocm/vllm-dev:main"
docker run \
--pull always \
--ipc=host \
--privileged \
--shm-size 16g \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--cap-add=SYS_PTRACE \
--cap-add=CAP_SYS_ADMIN \
--security-opt seccomp=unconfined \
--security-opt apparmor=unconfined \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HIP_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" \
-p $SAFETY_PORT:$SAFETY_PORT \
-v ~/.cache/huggingface:/root/.cache/huggingface \
$VLLM_DIMG \
python -m vllm.entrypoints.openai.api_server \
--model $SAFETY_MODEL \
--port $SAFETY_PORT
```
### Setting up vLLM server on NVIDIA GPU
Please check the [vLLM Documentation](https://docs.vllm.ai/en/v0.5.5/serving/deploying_with_docker.html) to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run \
--pull always \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--ipc=host \
vllm/vllm-openai:latest \
--gpu-memory-utilization 0.7 \
--model $INFERENCE_MODEL \
--port $INFERENCE_PORT
```
Note that you'll also need to set `--enable-auto-tool-choice` and `--tool-call-parser` to [enable tool calling in vLLM](https://docs.vllm.ai/en/latest/features/tool_calling.html).
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
```bash
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run \
--pull always \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
-p $SAFETY_PORT:$SAFETY_PORT \
--ipc=host \
vllm/vllm-openai:latest \
--gpu-memory-utilization 0.7 \
--model $SAFETY_MODEL \
--port $SAFETY_PORT
```
### Setting up vLLM server on Intel GPU
Refer to [vLLM Documentation for XPU](https://docs.vllm.ai/en/v0.8.2/getting_started/installation/gpu.html?device=xpu) to get a vLLM endpoint. In addition to vLLM side setup which guides towards installing vLLM from sources orself-building vLLM Docker container, Intel provides prebuilt vLLM container to use on systems with Intel GPUs supported by PyTorch XPU backend:
- [intel/vllm](https://hub.docker.com/r/intel/vllm)
Here is a sample script to start a vLLM server locally via Docker using Intel provided container:
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
export ZE_AFFINITY_MASK=0
docker run \
--pull always \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--ipc=host \
intel/vllm:xpu \
--gpu-memory-utilization 0.7 \
--model $INFERENCE_MODEL \
--port $INFERENCE_PORT
```
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
```bash
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export ZE_AFFINITY_MASK=1
docker run \
--pull always \
--device /dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \
-p $SAFETY_PORT:$SAFETY_PORT \
--ipc=host \
intel/vllm:xpu \
--gpu-memory-utilization 0.7 \
--model $SAFETY_MODEL \
--port $SAFETY_PORT
```
## Running Llama Stack
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=8321
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./llama_stack/templates/remote-vllm/run.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/remote-vllm/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-remote-vllm \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env SAFETY_VLLM_URL=http://host.docker.internal:$SAFETY_PORT/v1
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=8321
cd distributions/remote-vllm
llama stack build --template remote-vllm --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://localhost:$INFERENCE_PORT/v1 \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env SAFETY_VLLM_URL=http://localhost:$SAFETY_PORT/v1
```

View file

@ -1,91 +0,0 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# SambaNova Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-sambanova` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| inference | `remote::sambanova`, `inline::sentence-transformers` |
| safety | `remote::sambanova` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `SAMBANOVA_API_KEY`: SambaNova API Key (default: ``)
### Models
The following models are available by default:
- `sambanova/Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `sambanova/Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `sambanova/Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
- `sambanova/Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `sambanova/Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `sambanova/Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `sambanova/Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `sambanova/Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)`
- `sambanova/Llama-4-Maverick-17B-128E-Instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)`
- `sambanova/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
### Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](http://cloud.sambanova.ai?utm_source=llamastack&utm_medium=external&utm_campaign=cloud_signup).
## Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
```bash
LLAMA_STACK_PORT=8321
llama stack build --template sambanova --image-type container
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
distribution-sambanova \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Venv
```bash
llama stack build --template sambanova --image-type venv
llama stack run --image-type venv ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Conda
```bash
llama stack build --template sambanova --image-type conda
llama stack run --image-type conda ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

View file

@ -0,0 +1,245 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Starter Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-starter` distribution is a comprehensive, multi-provider distribution that includes most of the available inference providers in Llama Stack. It's designed to be a one-stop solution for developers who want to experiment with different AI providers without having to configure each one individually.
## Provider Composition
The starter distribution consists of the following provider configurations:
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| files | `inline::localfs` |
| inference | `remote::openai`, `remote::fireworks`, `remote::together`, `remote::ollama`, `remote::anthropic`, `remote::gemini`, `remote::groq`, `remote::sambanova`, `remote::vllm`, `remote::tgi`, `remote::cerebras`, `remote::llama-openai-compat`, `remote::nvidia`, `remote::hf::serverless`, `remote::hf::endpoint`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `inline::sqlite-vec`, `remote::chromadb`, `remote::pgvector` |
## Inference Providers
The starter distribution includes a comprehensive set of inference providers:
### Hosted Providers
- **OpenAI**: GPT-4, GPT-3.5, O1, O3, O4 models and text embeddings
- **Fireworks**: Llama 3.1, 3.2, 3.3, 4 Scout, 4 Maverick models and embeddings
- **Together**: Llama 3.1, 3.2, 3.3, 4 Scout, 4 Maverick models and embeddings
- **Anthropic**: Claude 3.5 Sonnet, Claude 3.7 Sonnet, Claude 3.5 Haiku, and Voyage embeddings
- **Gemini**: Gemini 1.5, 2.0, 2.5 models and text embeddings
- **Groq**: Fast Llama models (3.1, 3.2, 3.3, 4 Scout, 4 Maverick)
- **SambaNova**: Llama 3.1, 3.2, 3.3, 4 Scout, 4 Maverick models
- **Cerebras**: Cerebras AI models
- **NVIDIA**: NVIDIA NIM models
- **HuggingFace**: Serverless and endpoint models
- **Bedrock**: AWS Bedrock models
### Local/Remote Providers
- **Ollama**: Local Ollama models
- **vLLM**: Local or remote vLLM server
- **TGI**: Text Generation Inference server - Dell Enterprise Hub's custom TGI container too (use `DEH_URL`)
- **Sentence Transformers**: Local embedding models
All providers are disabled by default. So you need to enable them by setting the environment variables.
## Environment Variables
The following environment variables can be configured:
### Server Configuration
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
### API Keys for Hosted Providers
- `OPENAI_API_KEY`: OpenAI API key
- `FIREWORKS_API_KEY`: Fireworks API key
- `TOGETHER_API_KEY`: Together API key
- `ANTHROPIC_API_KEY`: Anthropic API key
- `GEMINI_API_KEY`: Google Gemini API key
- `GROQ_API_KEY`: Groq API key
- `SAMBANOVA_API_KEY`: SambaNova API key
- `CEREBRAS_API_KEY`: Cerebras API key
- `LLAMA_API_KEY`: Llama API key
- `NVIDIA_API_KEY`: NVIDIA API key
- `HF_API_TOKEN`: HuggingFace API token
### Local Provider Configuration
- `OLLAMA_URL`: Ollama server URL (default: `http://localhost:11434`)
- `VLLM_URL`: vLLM server URL (default: `http://localhost:8000/v1`)
- `VLLM_MAX_TOKENS`: vLLM max tokens (default: `4096`)
- `VLLM_API_TOKEN`: vLLM API token (default: `fake`)
- `VLLM_TLS_VERIFY`: vLLM TLS verification (default: `true`)
- `TGI_URL`: TGI server URL
### Model Configuration
- `INFERENCE_MODEL`: HuggingFace model for serverless inference
- `INFERENCE_ENDPOINT_NAME`: HuggingFace endpoint name
- `OLLAMA_INFERENCE_MODEL`: Ollama model name
- `OLLAMA_EMBEDDING_MODEL`: Ollama embedding model name
- `OLLAMA_EMBEDDING_DIMENSION`: Ollama embedding dimension (default: `384`)
- `VLLM_INFERENCE_MODEL`: vLLM model name
### Vector Database Configuration
- `SQLITE_STORE_DIR`: SQLite store directory (default: `~/.llama/distributions/starter`)
- `ENABLE_SQLITE_VEC`: Enable SQLite vector provider
- `ENABLE_CHROMADB`: Enable ChromaDB provider
- `ENABLE_PGVECTOR`: Enable PGVector provider
- `CHROMADB_URL`: ChromaDB server URL
- `PGVECTOR_HOST`: PGVector host (default: `localhost`)
- `PGVECTOR_PORT`: PGVector port (default: `5432`)
- `PGVECTOR_DB`: PGVector database name
- `PGVECTOR_USER`: PGVector username
- `PGVECTOR_PASSWORD`: PGVector password
### Tool Configuration
- `BRAVE_SEARCH_API_KEY`: Brave Search API key
- `TAVILY_SEARCH_API_KEY`: Tavily Search API key
### Telemetry Configuration
- `OTEL_SERVICE_NAME`: OpenTelemetry service name
- `TELEMETRY_SINKS`: Telemetry sinks (default: `console,sqlite`)
## Enabling Providers
You can enable specific providers by setting their provider ID to a valid value using environment variables. This is useful when you want to use certain providers or don't have the required API keys.
### Examples of Enabling Providers
#### Enable FAISS Vector Provider
```bash
export ENABLE_FAISS=faiss
```
#### Enable Ollama Models
```bash
export ENABLE_OLLAMA=ollama
```
#### Disable vLLM Models
```bash
export VLLM_INFERENCE_MODEL=__disabled__
```
#### Disable Optional Vector Providers
```bash
export ENABLE_SQLITE_VEC=__disabled__
export ENABLE_CHROMADB=__disabled__
export ENABLE_PGVECTOR=__disabled__
```
### Provider ID Patterns
The starter distribution uses several patterns for provider IDs:
1. **Direct provider IDs**: `faiss`, `ollama`, `vllm`
2. **Environment-based provider IDs**: `${env.ENABLE_SQLITE_VEC+sqlite-vec}`
3. **Model-based provider IDs**: `${env.OLLAMA_INFERENCE_MODEL:__disabled__}`
When using the `+` pattern (like `${env.ENABLE_SQLITE_VEC+sqlite-vec}`), the provider is enabled by default and can be disabled by setting the environment variable to `__disabled__`.
When using the `:` pattern (like `${env.OLLAMA_INFERENCE_MODEL:__disabled__}`), the provider is disabled by default and can be enabled by setting the environment variable to a valid value.
## Running the Distribution
You can run the starter distribution via Docker or Conda.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-e OPENAI_API_KEY=your_openai_key \
-e FIREWORKS_API_KEY=your_fireworks_key \
-e TOGETHER_API_KEY=your_together_key \
llamastack/distribution-starter \
--port $LLAMA_STACK_PORT
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template starter --image-type conda
llama stack run distributions/starter/run.yaml \
--port 8321 \
--env OPENAI_API_KEY=your_openai_key \
--env FIREWORKS_API_KEY=your_fireworks_key \
--env TOGETHER_API_KEY=your_together_key
```
## Example Usage
Once the distribution is running, you can use any of the available models. Here are some examples:
### Using OpenAI Models
```bash
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id openai/gpt-4o \
--message "Hello, how are you?"
```
### Using Fireworks Models
```bash
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id fireworks/meta-llama/Llama-3.2-3B-Instruct \
--message "Write a short story about a robot."
```
### Using Local Ollama Models
```bash
# First, make sure Ollama is running and you have a model
ollama run llama3.2:3b
# Then use it through Llama Stack
export OLLAMA_INFERENCE_MODEL=llama3.2:3b
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id ollama/llama3.2:3b \
--message "Explain quantum computing in simple terms."
```
## Storage
The starter distribution uses SQLite for local storage of various components:
- **Metadata store**: `~/.llama/distributions/starter/registry.db`
- **Inference store**: `~/.llama/distributions/starter/inference_store.db`
- **FAISS store**: `~/.llama/distributions/starter/faiss_store.db`
- **SQLite vector store**: `~/.llama/distributions/starter/sqlite_vec.db`
- **Files metadata**: `~/.llama/distributions/starter/files_metadata.db`
- **Agents store**: `~/.llama/distributions/starter/agents_store.db`
- **Responses store**: `~/.llama/distributions/starter/responses_store.db`
- **Trace store**: `~/.llama/distributions/starter/trace_store.db`
- **Evaluation store**: `~/.llama/distributions/starter/meta_reference_eval.db`
- **Dataset I/O stores**: Various HuggingFace and local filesystem stores
## Benefits of the Starter Distribution
1. **Comprehensive Coverage**: Includes most popular AI providers in one distribution
2. **Flexible Configuration**: Easy to enable/disable providers based on your needs
3. **No Local GPU Required**: Most providers are cloud-based, making it accessible to developers without high-end hardware
4. **Easy Migration**: Start with hosted providers and gradually move to local ones as needed
5. **Production Ready**: Includes safety, evaluation, and telemetry components
6. **Tool Integration**: Comes with web search, RAG, and model context protocol tools
The starter distribution is ideal for developers who want to experiment with different AI providers, build prototypes quickly, or create applications that can work with multiple AI backends.

View file

@ -1,149 +0,0 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# TGI Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::tgi`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080/v1`)
- `TGI_SAFETY_URL`: URL of the TGI server with the safety model (default: `http://127.0.0.1:8081/v1`)
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
## Setting up TGI server
Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
```bash
export INFERENCE_PORT=8080
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run --rm -it \
--pull always \
-v $HOME/.cache/huggingface:/data \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--cuda-memory-fraction 0.7 \
--model-id $INFERENCE_MODEL \
--port $INFERENCE_PORT
```
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
```bash
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
--pull always \
-v $HOME/.cache/huggingface:/data \
-p $SAFETY_PORT:$SAFETY_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--model-id $SAFETY_MODEL \
--port $SAFETY_PORT
```
## Running Llama Stack
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-tgi \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-tgi \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template tgi --image-type conda
llama stack run ./run.yaml
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT
```

View file

@ -1,86 +0,0 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Together Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-together` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::together`, `inline::sentence-transformers` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `TOGETHER_API_KEY`: Together.AI API Key (default: ``)
### Models
The following models are available by default:
- `meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-8B-Instruct)`
- `meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-70B-Instruct)`
- `meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
- `meta-llama/Llama-3.2-3B-Instruct-Turbo (aliases: meta-llama/Llama-3.2-3B-Instruct)`
- `meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
- `meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
- `meta-llama/Llama-3.3-70B-Instruct-Turbo (aliases: meta-llama/Llama-3.3-70B-Instruct)`
- `meta-llama/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)`
- `meta-llama/Llama-Guard-3-11B-Vision-Turbo (aliases: meta-llama/Llama-Guard-3-11B-Vision)`
- `togethercomputer/m2-bert-80M-8k-retrieval `
- `togethercomputer/m2-bert-80M-32k-retrieval `
- `meta-llama/Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct, together/meta-llama/Llama-4-Scout-17B-16E-Instruct)`
- `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct, together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8)`
### Prerequisite: API Keys
Make sure you have access to a Together API Key. You can get one by visiting [together.xyz](https://together.xyz/).
## Running Llama Stack with Together
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-together \
--port $LLAMA_STACK_PORT \
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
```
### Via Conda
```bash
llama stack build --template together --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env TOGETHER_API_KEY=$TOGETHER_API_KEY
```

View file

@ -58,7 +58,7 @@ which defines the providers and their settings.
Now let's build and run the Llama Stack config for Ollama.
```bash
INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run
INFERENCE_MODEL=llama3.2:3b llama stack build --template starter --image-type venv --run
```
:::
:::{tab-item} Using `conda`
@ -69,7 +69,7 @@ which defines the providers and their settings.
Now let's build and run the Llama Stack config for Ollama.
```bash
INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type conda --image-name llama3-3b-conda --run
INFERENCE_MODEL=llama3.2:3b llama stack build --template starter --image-type conda --image-name llama3-3b-conda --run
```
:::
:::{tab-item} Using a Container

View file

@ -17,7 +17,7 @@ ollama run llama3.2:3b --keepalive 60m
#### Step 2: Run the Llama Stack server
We will use `uv` to run the Llama Stack server.
```bash
INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template ollama --image-type venv --run
INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template starter --image-type venv --run
```
#### Step 3: Run the demo
Now open up a new terminal and copy the following script into a file named `demo_script.py`.

View file

@ -23,7 +23,7 @@ To use the HF SFTTrainer in your Llama Stack project, follow these steps:
You can access the HuggingFace trainer via the `ollama` distribution:
```bash
llama stack build --template ollama --image-type venv
llama stack build --template starter --image-type venv
llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
```