This commit is contained in:
Ashwin Bharambe 2025-10-11 21:52:30 -07:00
parent 58fcaa445e
commit bf59d26362
3 changed files with 24 additions and 8 deletions

View file

@ -135,6 +135,8 @@ class VectorIORouter(VectorIO):
logger.debug(f"VectorIORouter.openai_create_vector_store: name={params.name}, provider_id={provider_id}")
# If no embedding model is provided, use the first available one
# TODO: this branch will soon be deleted so you _must_ provide the embedding_model when
# creating a vector store
if embedding_model is None:
embedding_model_info = await self._get_first_embedding_model()
if embedding_model_info is None:
@ -153,7 +155,14 @@ class VectorIORouter(VectorIO):
)
provider = await self.routing_table.get_provider_impl(registered_vector_db.identifier)
# Pass params as-is to provider - it will extract what it needs from model_extra
# Update model_extra with registered values so provider uses the already-registered vector_db
if params.model_extra is None:
params.model_extra = {}
params.model_extra["provider_vector_db_id"] = registered_vector_db.provider_resource_id
params.model_extra["provider_id"] = registered_vector_db.provider_id
params.model_extra["embedding_model"] = embedding_model
params.model_extra["embedding_dimension"] = embedding_dimension
return await provider.openai_create_vector_store(params)
async def openai_list_vector_stores(

View file

@ -10,8 +10,9 @@ import mimetypes
import time
import uuid
from abc import ABC, abstractmethod
from typing import Any
from typing import Annotated, Any
from fastapi import Body
from pydantic import TypeAdapter
from llama_stack.apis.common.errors import VectorStoreNotFoundError
@ -342,7 +343,7 @@ class OpenAIVectorStoreMixin(ABC):
async def openai_create_vector_store(
self,
params: OpenAICreateVectorStoreRequestWithExtraBody,
params: Annotated[OpenAICreateVectorStoreRequestWithExtraBody, Body(...)],
) -> VectorStoreObject:
"""Creates a vector store."""
created_at = int(time.time())
@ -978,7 +979,7 @@ class OpenAIVectorStoreMixin(ABC):
async def openai_create_vector_store_file_batch(
self,
vector_store_id: str,
params: OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
params: Annotated[OpenAICreateVectorStoreFileBatchRequestWithExtraBody, Body(...)],
) -> VectorStoreFileBatchObject:
"""Create a vector store file batch."""
if vector_store_id not in self.openai_vector_stores:

View file

@ -21,6 +21,7 @@ from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
)
from llama_stack.apis.inference import OpenAIEmbeddingsRequestWithExtraBody
from llama_stack.apis.tools import RAGDocument
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
@ -274,10 +275,11 @@ class VectorDBWithIndex:
_validate_embedding(c.embedding, i, self.vector_db.embedding_dimension)
if chunks_to_embed:
resp = await self.inference_api.openai_embeddings(
self.vector_db.embedding_model,
[c.content for c in chunks_to_embed],
params = OpenAIEmbeddingsRequestWithExtraBody(
model=self.vector_db.embedding_model,
input=[c.content for c in chunks_to_embed],
)
resp = await self.inference_api.openai_embeddings(params)
for c, data in zip(chunks_to_embed, resp.data, strict=False):
c.embedding = data.embedding
@ -316,7 +318,11 @@ class VectorDBWithIndex:
if mode == "keyword":
return await self.index.query_keyword(query_string, k, score_threshold)
embeddings_response = await self.inference_api.openai_embeddings(self.vector_db.embedding_model, [query_string])
params = OpenAIEmbeddingsRequestWithExtraBody(
model=self.vector_db.embedding_model,
input=[query_string],
)
embeddings_response = await self.inference_api.openai_embeddings(params)
query_vector = np.array(embeddings_response.data[0].embedding, dtype=np.float32)
if mode == "hybrid":
return await self.index.query_hybrid(