Update OpenAIResponseInput to include OpenAIResponseOutput

This commit is contained in:
Luis Tomas Bolivar 2025-10-03 14:51:38 +02:00
parent 658fb2c777
commit bf7950338e
8 changed files with 80 additions and 72 deletions

View file

@ -24,6 +24,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputToolWebSearch,
OpenAIResponseMessage,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageFunctionToolCall,
OpenAIResponseOutputMessageMCPCall,
OpenAIResponseOutputMessageWebSearchToolCall,
OpenAIResponseText,
@ -1169,3 +1170,75 @@ async def test_create_openai_response_with_invalid_text_format(openai_responses_
model=model,
text=OpenAIResponseText(format={"type": "invalid"}),
)
async def test_create_openai_response_with_output_types_as_input(
openai_responses_impl, mock_inference_api, mock_responses_store
):
"""Test that response outputs can be used as inputs in multi-turn conversations.
Before adding OpenAIResponseOutput types to OpenAIResponseInput,
creating a _OpenAIResponseObjectWithInputAndMessages with some output types
in the input field would fail with a Pydantic ValidationError.
This test simulates storing a response where the input contains output message
types (MCP calls, function calls), which happens in multi-turn conversations.
"""
model = "meta-llama/Llama-3.1-8B-Instruct"
# Mock the inference response
mock_inference_api.openai_chat_completion.return_value = fake_stream()
# Create a response with store=True to trigger the storage path
result = await openai_responses_impl.create_openai_response(
input="What's the weather?",
model=model,
stream=True,
temperature=0.1,
store=True,
)
# Consume the stream
_ = [chunk async for chunk in result]
# Verify store was called
assert mock_responses_store.store_response_object.called
# Get the stored data
store_call_args = mock_responses_store.store_response_object.call_args
stored_response = store_call_args.kwargs["response_object"]
# Now simulate a multi-turn conversation where outputs become inputs
input_with_output_types = [
OpenAIResponseMessage(role="user", content="What's the weather?", name=None),
# These output types need to be valid OpenAIResponseInput
OpenAIResponseOutputMessageFunctionToolCall(
call_id="call_123",
name="get_weather",
arguments='{"city": "Tokyo"}',
type="function_call",
),
OpenAIResponseOutputMessageMCPCall(
id="mcp_456",
type="mcp_call",
server_label="weather_server",
name="get_temperature",
arguments='{"location": "Tokyo"}',
output="25°C",
),
]
# This simulates storing a response in a multi-turn conversation
# where previous outputs are included in the input.
stored_with_outputs = _OpenAIResponseObjectWithInputAndMessages(
id=stored_response.id,
created_at=stored_response.created_at,
model=stored_response.model,
status=stored_response.status,
output=stored_response.output,
input=input_with_output_types, # This will trigger Pydantic validation
messages=None,
)
assert stored_with_outputs.input == input_with_output_types
assert len(stored_with_outputs.input) == 3