mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-01 16:24:44 +00:00
temp commit
This commit is contained in:
parent
15e21cb8bd
commit
bfc782c054
7 changed files with 100 additions and 30 deletions
|
@ -16,7 +16,6 @@ from pydantic import BaseModel, Field
|
|||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.datasets import * # noqa: F403
|
||||
from llama_stack.apis.common.training_types import * # noqa: F403
|
||||
import torch
|
||||
|
||||
|
||||
class OptimizerType(Enum):
|
||||
|
@ -36,7 +35,7 @@ class OptimizerConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class TrainingConfig(BaseModel):
|
||||
dtype: torch.dtype
|
||||
dtype: str
|
||||
n_epochs: int
|
||||
max_steps_per_epoch: int
|
||||
gradient_accumulation_steps: int
|
||||
|
@ -116,10 +115,7 @@ class PostTrainingSFTRequest(BaseModel):
|
|||
validation_dataset_id: str
|
||||
|
||||
algorithm: FinetuningAlgorithm
|
||||
algorithm_config: Union[
|
||||
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
|
||||
]
|
||||
|
||||
algorithm_config: LoraFinetuningConfig
|
||||
optimizer_config: OptimizerConfig
|
||||
training_config: TrainingConfig
|
||||
|
||||
|
@ -140,7 +136,7 @@ class PostTrainingRLHFRequest(BaseModel):
|
|||
validation_dataset_id: str
|
||||
|
||||
algorithm: RLHFAlgorithm
|
||||
algorithm_config: Union[DPOAlignmentConfig]
|
||||
algorithm_config: DPOAlignmentConfig
|
||||
|
||||
optimizer_config: OptimizerConfig
|
||||
training_config: TrainingConfig
|
||||
|
@ -184,18 +180,16 @@ class PostTraining(Protocol):
|
|||
@webmethod(route="/post-training/supervised-fine-tune")
|
||||
def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
model: str,
|
||||
dataset_id: str,
|
||||
validation_dataset_id: str,
|
||||
algorithm: FinetuningAlgorithm,
|
||||
algorithm_config: Union[
|
||||
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
|
||||
],
|
||||
optimizer_config: OptimizerConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
job_uuid: Optional[str],
|
||||
model: Optional[str],
|
||||
dataset_id: Optional[str],
|
||||
validation_dataset_id: Optional[str],
|
||||
algorithm: Optional[FinetuningAlgorithm],
|
||||
algorithm_config: Optional[LoraFinetuningConfig],
|
||||
optimizer_config: Optional[OptimizerConfig],
|
||||
training_config: Optional[TrainingConfig],
|
||||
hyperparam_search_config: Optional[Dict[str, Any]],
|
||||
logger_config: Optional[Dict[str, Any]],
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post-training/preference-optimize")
|
||||
|
@ -206,7 +200,7 @@ class PostTraining(Protocol):
|
|||
dataset_id: str,
|
||||
validation_dataset_id: str,
|
||||
algorithm: RLHFAlgorithm,
|
||||
algorithm_config: Union[DPOAlignmentConfig],
|
||||
algorithm_config: DPOAlignmentConfig,
|
||||
optimizer_config: OptimizerConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
|
|
|
@ -24,6 +24,7 @@ from llama_stack.apis.inspect import Inspect
|
|||
from llama_stack.apis.memory import Memory
|
||||
from llama_stack.apis.memory_banks import MemoryBanks
|
||||
from llama_stack.apis.models import Models
|
||||
from llama_stack.apis.post_training import PostTraining
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
|
@ -58,6 +59,7 @@ def api_protocol_map() -> Dict[Api, Any]:
|
|||
Api.scoring_functions: ScoringFunctions,
|
||||
Api.eval: Eval,
|
||||
Api.eval_tasks: EvalTasks,
|
||||
Api.post_training: PostTraining,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -20,17 +20,46 @@ class MetaReferencePostTrainingImpl:
|
|||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
|
||||
LoraFinetuningConfig(
|
||||
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=False,
|
||||
rank=8,
|
||||
alpha=16,
|
||||
)
|
||||
|
||||
OptimizerConfig(
|
||||
optimizer_type=OptimizerType.adamw,
|
||||
lr=3e-4,
|
||||
lr_min=3e-5,
|
||||
weight_decay=0.1,
|
||||
num_warmup_steps=100,
|
||||
)
|
||||
|
||||
TrainingConfig(
|
||||
dtype="bf16",
|
||||
n_epochs=1,
|
||||
max_steps_per_epoch=10,
|
||||
gradient_accumulation_steps=1,
|
||||
batch_size=1,
|
||||
shuffle=1,
|
||||
enable_activation_checkpointing=False,
|
||||
memory_efficient_fsdp_wrap=False,
|
||||
fsdp_cpu_offload=False,
|
||||
)
|
||||
|
||||
def supervised_fine_tune(
|
||||
self,
|
||||
job_uuid: str,
|
||||
model: str,
|
||||
dataset_id: str,
|
||||
validation_dataset_id: str,
|
||||
algorithm: FinetuningAlgorithm,
|
||||
algorithm_config: LoraFinetuningConfig,
|
||||
optimizer_config: OptimizerConfig,
|
||||
training_config: TrainingConfig,
|
||||
logger_config: Dict[str, Any],
|
||||
job_uuid: Optional[str] = "1234",
|
||||
model: Optional[str] = " meta-llama/Llama-3.2-3B-Instruct",
|
||||
dataset_id: Optional[str] = "alpaca",
|
||||
validation_dataset_id: Optional[str] = "alpaca",
|
||||
algorithm: Optional[FinetuningAlgorithm] = FinetuningAlgorithm.lora,
|
||||
algorithm_config: Optional[LoraFinetuningConfig] = LoraFinetuningConfig,
|
||||
optimizer_config: Optional[OptimizerConfig] = OptimizerConfig,
|
||||
training_config: Optional[TrainingConfig] = TrainingConfig,
|
||||
hyperparam_search_config: Optional[Dict[str, Any]] = {},
|
||||
logger_config: Optional[Dict[str, Any]] = {},
|
||||
) -> PostTrainingJob:
|
||||
# wrapper request to make it easier to pass around (internal only, not exposed to API)
|
||||
request = PostTrainingSFTRequest(
|
||||
|
@ -54,3 +83,36 @@ class MetaReferencePostTrainingImpl:
|
|||
raise NotImplementedError()
|
||||
|
||||
return PostTrainingJob(job_uuid=job_uuid)
|
||||
|
||||
def preference_optimize(
|
||||
self,
|
||||
job_uuid: str,
|
||||
finetuned_model: URL,
|
||||
dataset_id: str,
|
||||
validation_dataset_id: str,
|
||||
algorithm: RLHFAlgorithm,
|
||||
algorithm_config: DPOAlignmentConfig,
|
||||
optimizer_config: OptimizerConfig,
|
||||
training_config: TrainingConfig,
|
||||
hyperparam_search_config: Dict[str, Any],
|
||||
logger_config: Dict[str, Any],
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
||||
|
||||
# sends SSE stream of logs
|
||||
@webmethod(route="/post-training/job/logs")
|
||||
def get_training_job_logstream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
|
||||
|
||||
@webmethod(route="/post-training/job/status")
|
||||
def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobStatusResponse: ...
|
||||
|
||||
@webmethod(route="/post-training/job/cancel")
|
||||
def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/post-training/job/artifacts")
|
||||
def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobArtifactsResponse: ...
|
||||
|
|
|
@ -38,7 +38,7 @@ from torchtune.modules.peft import (
|
|||
set_trainable_params,
|
||||
validate_missing_and_unexpected_for_lora,
|
||||
)
|
||||
from torchtune.training.lr_scheduler import get_cosine_schedule_with_warmup
|
||||
from torchtune.training.lr_schedulers import get_cosine_schedule_with_warmup
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@ from llama_stack.distribution.datatypes import * # noqa: F403
|
|||
META_REFERENCE_DEPS = [
|
||||
"torch",
|
||||
"torchtune",
|
||||
"torchao",
|
||||
"numpy",
|
||||
]
|
||||
|
||||
|
@ -24,5 +25,8 @@ def available_providers() -> List[ProviderSpec]:
|
|||
pip_packages=META_REFERENCE_DEPS,
|
||||
module="llama_stack.providers.inline.post_training.meta_reference",
|
||||
config_class="llama_stack.providers.inline.post_training.meta_reference.MetaReferencePostTrainingConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
],
|
||||
),
|
||||
]
|
||||
|
|
|
@ -6,6 +6,8 @@ distribution_spec:
|
|||
providers:
|
||||
post_training:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
inference:
|
||||
- inline::meta-reference
|
||||
memory:
|
||||
|
|
|
@ -8,6 +8,8 @@ apis:
|
|||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
- datasetio
|
||||
- post_training
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: meta-reference-inference
|
||||
|
@ -16,6 +18,10 @@ providers:
|
|||
model: ${env.INFERENCE_MODEL}
|
||||
max_seq_len: 4096
|
||||
checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null}
|
||||
datasetio:
|
||||
- provider_id: huggingface-0
|
||||
provider_type: remote::huggingface
|
||||
config: {}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue