Merge branch 'main' into vllm_health_check

This commit is contained in:
Sumit Jaiswal 2025-06-05 18:09:36 +05:30 committed by GitHub
commit c18b585d32
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
143 changed files with 9210 additions and 5347 deletions

View file

@ -255,7 +255,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
params = {
"model": request.model,
**input_dict,
"stream": request.stream,
"stream": bool(request.stream),
**self._build_options(request.sampling_params, request.response_format, request.logprobs),
}
logger.debug(f"params to fireworks: {params}")

View file

@ -12,7 +12,7 @@ from llama_stack.providers.utils.inference.model_registry import (
build_model_entry,
)
model_entries = [
MODEL_ENTRIES = [
build_hf_repo_model_entry(
"llama3.1:8b-instruct-fp16",
CoreModelId.llama3_1_8b_instruct.value,

View file

@ -5,6 +5,7 @@
# the root directory of this source tree.
import uuid
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
@ -77,7 +78,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
request_has_media,
)
from .models import model_entries
from .models import MODEL_ENTRIES
logger = get_logger(name=__name__, category="inference")
@ -87,7 +88,7 @@ class OllamaInferenceAdapter(
ModelsProtocolPrivate,
):
def __init__(self, url: str) -> None:
self.register_helper = ModelRegistryHelper(model_entries)
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
self.url = url
@property
@ -480,7 +481,25 @@ class OllamaInferenceAdapter(
top_p=top_p,
user=user,
)
return await self.openai_client.chat.completions.create(**params) # type: ignore
response = await self.openai_client.chat.completions.create(**params)
return await self._adjust_ollama_chat_completion_response_ids(response)
async def _adjust_ollama_chat_completion_response_ids(
self,
response: OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk],
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
id = f"chatcmpl-{uuid.uuid4()}"
if isinstance(response, AsyncIterator):
async def stream_with_chunk_ids() -> AsyncIterator[OpenAIChatCompletionChunk]:
async for chunk in response:
chunk.id = id
yield chunk
return stream_with_chunk_ids()
else:
response.id = id
return response
async def batch_completion(
self,