mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
distributions
This commit is contained in:
parent
ef5acefcc1
commit
c1adec6700
8 changed files with 19 additions and 415 deletions
14
README.md
14
README.md
|
@ -61,12 +61,14 @@ A Distribution is where APIs and Providers are assembled together to provide a c
|
|||
| PyTorch ExecuTorch | On-device iOS | :heavy_check_mark: | :heavy_check_mark: | | |
|
||||
|
||||
### Distributions
|
||||
| **Distribution Provider** | **Docker** | **Inference** | **Memory** | **Safety** | **Telemetry** |
|
||||
| :----: | :----: | :----: | :----: | :----: | :----: |
|
||||
| Meta Reference | [Local GPU](https://hub.docker.com/repository/docker/llamastack/llamastack-local-gpu/general), [Local CPU](https://hub.docker.com/repository/docker/llamastack/llamastack-local-cpu/general) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
||||
| Dell-TGI | [Local TGI + Chroma](https://hub.docker.com/repository/docker/llamastack/llamastack-local-tgi-chroma/general) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
|
||||
|
||||
|
||||
| **Distribution** | **Llama Stack Docker** | Start This Distribution | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|:----------------: |:------------------------------------------: |:-----------------------: |:------------------: |:------------------: |:------------------: |:------------------: |:------------------: |
|
||||
| Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/meta-reference-gpu.html) | meta-reference | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Meta Reference Quantized | [llamastack/distribution-meta-reference-quantized-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-quantized-gpu/general) | [Guide](./meta-reference-quantized-gpu/) | meta-reference-quantized | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/ollama.html) | remote::ollama | meta-reference | remote::pgvector; remote::chromadb | remote::ollama | meta-reference |
|
||||
| TGI | [llamastack/distribution-tgi](https://hub.docker.com/repository/docker/llamastack/distribution-tgi/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/tgi.html) | remote::tgi | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Together | [llamastack/distribution-together](https://hub.docker.com/repository/docker/llamastack/distribution-together/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/together.html) | remote::together | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
| Fireworks | [llamastack/distribution-fireworks](https://hub.docker.com/repository/docker/llamastack/distribution-fireworks/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/fireworks.html) | remote::fireworks | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
|
||||
## Installation
|
||||
|
||||
|
|
|
@ -1,66 +0,0 @@
|
|||
# Fireworks Distribution
|
||||
|
||||
The `llamastack/distribution-` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::fireworks | meta-reference | meta-reference | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Docker: Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have an hosted endpoint at Fireworks with API Key.
|
||||
|
||||
```
|
||||
$ cd distributions/fireworks
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Fireworks URL server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: fireworks
|
||||
provider_type: remote::fireworks
|
||||
config:
|
||||
url: https://api.fireworks.ai/inferenc
|
||||
api_key: <optional api key>
|
||||
```
|
||||
|
||||
### Conda: llama stack run (Single Node CPU)
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```bash
|
||||
llama stack build --template fireworks --image-type conda
|
||||
# -- modify run.yaml to a valid Fireworks server endpoint
|
||||
llama stack run ./run.yaml
|
||||
```
|
||||
|
||||
|
||||
### Model Serving
|
||||
|
||||
Use `llama-stack-client models list` to chekc the available models served by Fireworks.
|
||||
```
|
||||
$ llama-stack-client models list
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+==============================+==============================+===============+============+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-70B-Instruct | Llama3.1-70B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.1-405B-Instruct | Llama3.1-405B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-1B-Instruct | Llama3.2-1B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-3B-Instruct | Llama3.2-3B-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-11B-Vision-Instruct | Llama3.2-11B-Vision-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
| Llama3.2-90B-Vision-Instruct | Llama3.2-90B-Vision-Instruct | fireworks0 | {} |
|
||||
+------------------------------+------------------------------+---------------+------------+
|
||||
```
|
|
@ -1,102 +0,0 @@
|
|||
# Meta Reference Distribution
|
||||
|
||||
The `llamastack/distribution-meta-reference-gpu` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | meta-reference | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Start the Distribution (Single Node GPU)
|
||||
|
||||
```
|
||||
$ cd distributions/meta-reference-gpu
|
||||
$ ls
|
||||
build.yaml compose.yaml README.md run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a local server with access to your GPU.
|
||||
|
||||
|
||||
> [!NOTE]
|
||||
> `~/.llama` should be the path containing downloaded weights of Llama models.
|
||||
|
||||
|
||||
This will download and start running a pre-built docker container. Alternatively, you may use the following commands:
|
||||
|
||||
```
|
||||
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
### Alternative (Build and start distribution locally via conda)
|
||||
- You may checkout the [Getting Started](../../docs/getting_started.md) for more details on building locally via conda and starting up a meta-reference distribution.
|
||||
|
||||
### Start Distribution With pgvector/chromadb Memory Provider
|
||||
##### pgvector
|
||||
1. Start running the pgvector server:
|
||||
|
||||
```
|
||||
docker run --network host --name mypostgres -it -p 5432:5432 -e POSTGRES_PASSWORD=mysecretpassword -e POSTGRES_USER=postgres -e POSTGRES_DB=postgres pgvector/pgvector:pg16
|
||||
```
|
||||
|
||||
2. Edit the `run.yaml` file to point to the pgvector server.
|
||||
```
|
||||
memory:
|
||||
- provider_id: pgvector
|
||||
provider_type: remote::pgvector
|
||||
config:
|
||||
host: 127.0.0.1
|
||||
port: 5432
|
||||
db: postgres
|
||||
user: postgres
|
||||
password: mysecretpassword
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> If you get a `RuntimeError: Vector extension is not installed.`. You will need to run `CREATE EXTENSION IF NOT EXISTS vector;` to include the vector extension. E.g.
|
||||
|
||||
```
|
||||
docker exec -it mypostgres ./bin/psql -U postgres
|
||||
postgres=# CREATE EXTENSION IF NOT EXISTS vector;
|
||||
postgres=# SELECT extname from pg_extension;
|
||||
extname
|
||||
```
|
||||
|
||||
3. Run `docker compose up` with the updated `run.yaml` file.
|
||||
|
||||
##### chromadb
|
||||
1. Start running chromadb server
|
||||
```
|
||||
docker run -it --network host --name chromadb -p 6000:6000 -v ./chroma_vdb:/chroma/chroma -e IS_PERSISTENT=TRUE chromadb/chroma:latest
|
||||
```
|
||||
|
||||
2. Edit the `run.yaml` file to point to the chromadb server.
|
||||
```
|
||||
memory:
|
||||
- provider_id: remote::chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
host: localhost
|
||||
port: 6000
|
||||
```
|
||||
|
||||
3. Run `docker compose up` with the updated `run.yaml` file.
|
||||
|
||||
### Serving a new model
|
||||
You may change the `config.model` in `run.yaml` to update the model currently being served by the distribution. Make sure you have the model checkpoint downloaded in your `~/.llama`.
|
||||
```
|
||||
inference:
|
||||
- provider_id: meta0
|
||||
provider_type: meta-reference
|
||||
config:
|
||||
model: Llama3.2-11B-Vision-Instruct
|
||||
quantization: null
|
||||
torch_seed: null
|
||||
max_seq_len: 4096
|
||||
max_batch_size: 1
|
||||
```
|
||||
|
||||
Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
|
|
@ -1,129 +0,0 @@
|
|||
# Ollama Distribution
|
||||
|
||||
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |---------------- |---------------- |---------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::ollama | meta-reference | remote::pgvector, remote::chroma | remote::ollama | meta-reference |
|
||||
|
||||
|
||||
### Docker: Start a Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a Ollama server with access to your GPU.
|
||||
|
||||
```
|
||||
$ cd distributions/ollama/gpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
You will see outputs similar to following ---
|
||||
```
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:41 | 200 | 226.841µs | ::1 | GET "/api/ps"
|
||||
[ollama] | [GIN] 2024/10/18 - 21:19:42 | 200 | 60.908µs | ::1 | GET "/api/ps"
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
[llamastack] | Resolved 12 providers
|
||||
[llamastack] | inner-inference => ollama0
|
||||
[llamastack] | models => __routing_table__
|
||||
[llamastack] | inference => __autorouted__
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### Docker: Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This will start an ollama server with CPU only, please see [Ollama Documentations](https://github.com/ollama/ollama) for serving models on CPU only.
|
||||
|
||||
```
|
||||
$ cd distributions/ollama/cpu
|
||||
$ ls
|
||||
compose.yaml run.yaml
|
||||
$ docker compose up
|
||||
```
|
||||
|
||||
### Conda: ollama run + llama stack run
|
||||
|
||||
If you wish to separately spin up a Ollama server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### Start Ollama server.
|
||||
- Please check the [Ollama Documentations](https://github.com/ollama/ollama) for more details.
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||
```
|
||||
|
||||
**Via CLI**
|
||||
```
|
||||
ollama run <model_id>
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to Ollama server
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```
|
||||
llama stack build --template ollama --image-type conda
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./gpu/run.yaml:/root/llamastack-run-ollama.yaml --gpus=all llamastack/distribution-ollama --yaml_config /root/llamastack-run-ollama.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct Ollama endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: ollama0
|
||||
provider_type: remote::ollama
|
||||
config:
|
||||
url: http://127.0.0.1:14343
|
||||
```
|
||||
|
||||
### Model Serving
|
||||
|
||||
#### Downloading model via Ollama
|
||||
|
||||
You can use ollama for managing model downloads.
|
||||
|
||||
```
|
||||
ollama pull llama3.1:8b-instruct-fp16
|
||||
ollama pull llama3.1:70b-instruct-fp16
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/adapters/inference/ollama/ollama.py) for the supported Ollama models.
|
||||
|
||||
|
||||
To serve a new model with `ollama`
|
||||
```
|
||||
ollama run <model_name>
|
||||
```
|
||||
|
||||
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
|
||||
```
|
||||
$ ollama ps
|
||||
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
||||
```
|
||||
|
||||
To verify that the model served by ollama is correctly connected to Llama Stack server
|
||||
```
|
||||
$ llama-stack-client models list
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+======================+======================+===============+===============================================+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
```
|
|
@ -1,112 +0,0 @@
|
|||
# TGI Distribution
|
||||
|
||||
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
|
||||
|
||||
### Docker: Start the Distribution (Single Node GPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a TGI server with access to your GPU.
|
||||
|
||||
|
||||
```
|
||||
$ cd distributions/tgi/gpu && docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
docker compose down
|
||||
```
|
||||
|
||||
### Docker: Start the Distribution (Single Node CPU)
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have an hosted endpoint compatible with TGI server.
|
||||
|
||||
```
|
||||
$ cd distributions/tgi/cpu && docker compose up
|
||||
```
|
||||
|
||||
Replace <ENTER_YOUR_TGI_HOSTED_ENDPOINT> in `run.yaml` file with your TGI endpoint.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
|
||||
```
|
||||
|
||||
### Conda: TGI server + llama stack run
|
||||
|
||||
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### Start TGI server locally
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
|
||||
|
||||
```
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```bash
|
||||
llama stack build --template tgi --image-type conda
|
||||
# -- start a TGI server endpoint
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-tgi --yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
|
||||
|
||||
### Model Serving
|
||||
To serve a new model with `tgi`, change the docker command flag `--model-id <model-to-serve>`.
|
||||
|
||||
This can be done by edit the `command` args in `compose.yaml`. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
|
||||
|
||||
```
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.2-1B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
```
|
||||
|
||||
or by changing the docker run command's `--model-id` flag
|
||||
```
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.2-1B-Instruct --port 5009
|
||||
```
|
||||
|
||||
In `run.yaml`, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
|
||||
```
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
|
@ -2,12 +2,23 @@
|
|||
|
||||
A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.
|
||||
|
||||
| **Distribution** | **Llama Stack Docker** | Start This Distribution | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|:----------------: |:------------------------------------------: |:-----------------------: |:------------------: |:------------------: |:------------------: |:------------------: |:------------------: |
|
||||
| Meta Reference | [llamastack/distribution-meta-reference-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-gpu/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/meta-reference-gpu.html) | meta-reference | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Meta Reference Quantized | [llamastack/distribution-meta-reference-quantized-gpu](https://hub.docker.com/repository/docker/llamastack/distribution-meta-reference-quantized-gpu/general) | [Guide](./meta-reference-quantized-gpu/) | meta-reference-quantized | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Ollama | [llamastack/distribution-ollama](https://hub.docker.com/repository/docker/llamastack/distribution-ollama/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/ollama.html) | remote::ollama | meta-reference | remote::pgvector; remote::chromadb | remote::ollama | meta-reference |
|
||||
| TGI | [llamastack/distribution-tgi](https://hub.docker.com/repository/docker/llamastack/distribution-tgi/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/tgi.html) | remote::tgi | meta-reference | meta-reference; remote::pgvector; remote::chromadb | meta-reference | meta-reference |
|
||||
| Together | [llamastack/distribution-together](https://hub.docker.com/repository/docker/llamastack/distribution-together/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/together.html) | remote::together | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
| Fireworks | [llamastack/distribution-fireworks](https://hub.docker.com/repository/docker/llamastack/distribution-fireworks/general) | [Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/distributions/fireworks.html) | remote::fireworks | meta-reference | remote::weaviate | meta-reference | meta-reference |
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
meta-reference-gpu
|
||||
meta-reference-quantized-gpu
|
||||
ollama
|
||||
tgi
|
||||
together
|
||||
fireworks
|
||||
dell-tgi
|
||||
```
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue