mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 05:38:38 +00:00
use agent.inference_api instead of passing host/port again
This commit is contained in:
parent
4a70f3d2ba
commit
c2b7b462e9
3 changed files with 15 additions and 21 deletions
|
@ -0,0 +1,85 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from jinja2 import Template
|
||||
from llama_models.llama3.api import * # noqa: F403
|
||||
|
||||
|
||||
from llama_toolchain.agentic_system.api import (
|
||||
DefaultMemoryQueryGeneratorConfig,
|
||||
LLMMemoryQueryGeneratorConfig,
|
||||
MemoryQueryGenerator,
|
||||
MemoryQueryGeneratorConfig,
|
||||
)
|
||||
from termcolor import cprint # noqa: F401
|
||||
from llama_toolchain.inference.api import * # noqa: F403
|
||||
|
||||
|
||||
async def generate_rag_query(
|
||||
generator_config: MemoryQueryGeneratorConfig,
|
||||
messages: List[Message],
|
||||
**kwargs,
|
||||
):
|
||||
if generator_config.type == MemoryQueryGenerator.default.value:
|
||||
generator = DefaultRAGQueryGenerator(generator_config, **kwargs)
|
||||
elif generator_config.type == MemoryQueryGenerator.llm.value:
|
||||
generator = LLMRAGQueryGenerator(generator_config, **kwargs)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unsupported memory query generator {generator_config.type}"
|
||||
)
|
||||
|
||||
query = await generator.gen(messages)
|
||||
# cprint(f"Generated query >>>: {query}", color="green")
|
||||
return query
|
||||
|
||||
|
||||
class DefaultRAGQueryGenerator:
|
||||
def __init__(self, config: DefaultMemoryQueryGeneratorConfig, **kwargs):
|
||||
self.config = config
|
||||
|
||||
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
|
||||
query = self.config.sep.join(
|
||||
interleaved_text_media_as_str(m.content) for m in messages
|
||||
)
|
||||
return query
|
||||
|
||||
|
||||
class LLMRAGQueryGenerator:
|
||||
def __init__(self, config: LLMMemoryQueryGeneratorConfig, **kwargs):
|
||||
self.config = config
|
||||
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
|
||||
self.inference_api = kwargs["inference_api"]
|
||||
|
||||
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
|
||||
"""
|
||||
Generates a query that will be used for
|
||||
retrieving relevant information from the memory bank.
|
||||
"""
|
||||
# get template from user
|
||||
# user template will assume data has the format of
|
||||
# pydantic object representing List[Message]
|
||||
m_dict = {"messages": [m.model_dump() for m in messages]}
|
||||
|
||||
template = Template(self.config.template)
|
||||
content = template.render(m_dict)
|
||||
|
||||
model = self.config.model
|
||||
message = UserMessage(content=content)
|
||||
response = self.inference_api.chat_completion(
|
||||
ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=[message],
|
||||
stream=False,
|
||||
)
|
||||
)
|
||||
|
||||
async for chunk in response:
|
||||
query = chunk.completion_message.content
|
||||
|
||||
return query
|
Loading…
Add table
Add a link
Reference in a new issue