use agent.inference_api instead of passing host/port again

This commit is contained in:
Hardik Shah 2024-09-06 12:48:08 -07:00
parent 4a70f3d2ba
commit c2b7b462e9
3 changed files with 15 additions and 21 deletions

View file

@ -133,8 +133,6 @@ class LLMMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value
model: str model: str
template: str template: str
host: str = "localhost"
port: int = 5000
class CustomMemoryQueryGeneratorConfig(BaseModel): class CustomMemoryQueryGeneratorConfig(BaseModel):
@ -157,7 +155,7 @@ class MemoryToolDefinition(ToolDefinitionCommon):
# This config defines how a query is generated using the messages # This config defines how a query is generated using the messages
# for memory bank retrieval. # for memory bank retrieval.
query_generator_config: MemoryQueryGeneratorConfig = Field( query_generator_config: MemoryQueryGeneratorConfig = Field(
default=DefaultMemoryQueryGeneratorConfig default=DefaultMemoryQueryGeneratorConfig()
) )
max_tokens_in_context: int = 4096 max_tokens_in_context: int = 4096
max_chunks: int = 10 max_chunks: int = 10

View file

@ -31,7 +31,7 @@ from llama_toolchain.tools.builtin import (
SingleMessageBuiltinTool, SingleMessageBuiltinTool,
) )
from .context_retriever import generate_rag_query from .rag.context_retriever import generate_rag_query
from .safety import SafetyException, ShieldRunnerMixin from .safety import SafetyException, ShieldRunnerMixin
@ -665,7 +665,9 @@ class ChatAgent(ShieldRunnerMixin):
# (i.e., no prior turns uploaded an Attachment) # (i.e., no prior turns uploaded an Attachment)
return None, [] return None, []
query = await generate_rag_query(memory.query_generator_config, messages) query = await generate_rag_query(
memory.query_generator_config, messages, inference_api=self.inference_api
)
tasks = [ tasks = [
self.memory_api.query_documents( self.memory_api.query_documents(
bank_id=bank_id, bank_id=bank_id,

View file

@ -10,38 +10,37 @@ from jinja2 import Template
from llama_models.llama3.api import * # noqa: F403 from llama_models.llama3.api import * # noqa: F403
from termcolor import cprint
from llama_toolchain.agentic_system.api import ( from llama_toolchain.agentic_system.api import (
DefaultMemoryQueryGeneratorConfig, DefaultMemoryQueryGeneratorConfig,
LLMMemoryQueryGeneratorConfig, LLMMemoryQueryGeneratorConfig,
MemoryQueryGenerator, MemoryQueryGenerator,
MemoryQueryGeneratorConfig, MemoryQueryGeneratorConfig,
) )
from termcolor import cprint # noqa: F401
from llama_toolchain.inference.api import * # noqa: F403 from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.inference.client import InferenceClient
async def generate_rag_query( async def generate_rag_query(
generator_config: MemoryQueryGeneratorConfig, generator_config: MemoryQueryGeneratorConfig,
messages: List[Message], messages: List[Message],
**kwargs,
): ):
if generator_config.type == MemoryQueryGenerator.default.value: if generator_config.type == MemoryQueryGenerator.default.value:
generator = DefaultRAGQueryGenerator(generator_config) generator = DefaultRAGQueryGenerator(generator_config, **kwargs)
elif generator_config.type == MemoryQueryGenerator.llm.value: elif generator_config.type == MemoryQueryGenerator.llm.value:
generator = LLMRAGQueryGenerator(generator_config) generator = LLMRAGQueryGenerator(generator_config, **kwargs)
else: else:
raise NotImplementedError( raise NotImplementedError(
f"Unsupported memory query generator {generator_config.type}" f"Unsupported memory query generator {generator_config.type}"
) )
query = await generator.gen(messages) query = await generator.gen(messages)
cprint(f"Generated query >>>: {query}", color="green") # cprint(f"Generated query >>>: {query}", color="green")
return query return query
class DefaultRAGQueryGenerator: class DefaultRAGQueryGenerator:
def __init__(self, config: DefaultMemoryQueryGeneratorConfig): def __init__(self, config: DefaultMemoryQueryGeneratorConfig, **kwargs):
self.config = config self.config = config
async def gen(self, messages: List[Message]) -> InterleavedTextMedia: async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
@ -52,11 +51,12 @@ class DefaultRAGQueryGenerator:
class LLMRAGQueryGenerator: class LLMRAGQueryGenerator:
def __init__(self, config: LLMMemoryQueryGeneratorConfig): def __init__(self, config: LLMMemoryQueryGeneratorConfig, **kwargs):
self.config = config self.config = config
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
self.inference_api = kwargs["inference_api"]
async def gen(self, messages: List[Message]) -> InterleavedTextMedia: async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
# params will have
""" """
Generates a query that will be used for Generates a query that will be used for
retrieving relevant information from the memory bank. retrieving relevant information from the memory bank.
@ -69,15 +69,9 @@ class LLMRAGQueryGenerator:
template = Template(self.config.template) template = Template(self.config.template)
content = template.render(m_dict) content = template.render(m_dict)
cprint(f"Rendered Template >>>: {content}", color="yellow")
# TODO: How to manage these config params better ?
host = self.config.host
port = self.config.port
client = InferenceClient(f"http://{host}:{port}")
model = self.config.model model = self.config.model
message = UserMessage(content=content) message = UserMessage(content=content)
response = client.chat_completion( response = self.inference_api.chat_completion(
ChatCompletionRequest( ChatCompletionRequest(
model=model, model=model,
messages=[message], messages=[message],