use agent.inference_api instead of passing host/port again

This commit is contained in:
Hardik Shah 2024-09-06 12:48:08 -07:00
parent 4a70f3d2ba
commit c2b7b462e9
3 changed files with 15 additions and 21 deletions

View file

@ -133,8 +133,6 @@ class LLMMemoryQueryGeneratorConfig(BaseModel):
type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value
model: str
template: str
host: str = "localhost"
port: int = 5000
class CustomMemoryQueryGeneratorConfig(BaseModel):
@ -157,7 +155,7 @@ class MemoryToolDefinition(ToolDefinitionCommon):
# This config defines how a query is generated using the messages
# for memory bank retrieval.
query_generator_config: MemoryQueryGeneratorConfig = Field(
default=DefaultMemoryQueryGeneratorConfig
default=DefaultMemoryQueryGeneratorConfig()
)
max_tokens_in_context: int = 4096
max_chunks: int = 10

View file

@ -31,7 +31,7 @@ from llama_toolchain.tools.builtin import (
SingleMessageBuiltinTool,
)
from .context_retriever import generate_rag_query
from .rag.context_retriever import generate_rag_query
from .safety import SafetyException, ShieldRunnerMixin
@ -665,7 +665,9 @@ class ChatAgent(ShieldRunnerMixin):
# (i.e., no prior turns uploaded an Attachment)
return None, []
query = await generate_rag_query(memory.query_generator_config, messages)
query = await generate_rag_query(
memory.query_generator_config, messages, inference_api=self.inference_api
)
tasks = [
self.memory_api.query_documents(
bank_id=bank_id,

View file

@ -10,38 +10,37 @@ from jinja2 import Template
from llama_models.llama3.api import * # noqa: F403
from termcolor import cprint
from llama_toolchain.agentic_system.api import (
DefaultMemoryQueryGeneratorConfig,
LLMMemoryQueryGeneratorConfig,
MemoryQueryGenerator,
MemoryQueryGeneratorConfig,
)
from termcolor import cprint # noqa: F401
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.inference.client import InferenceClient
async def generate_rag_query(
generator_config: MemoryQueryGeneratorConfig,
messages: List[Message],
**kwargs,
):
if generator_config.type == MemoryQueryGenerator.default.value:
generator = DefaultRAGQueryGenerator(generator_config)
generator = DefaultRAGQueryGenerator(generator_config, **kwargs)
elif generator_config.type == MemoryQueryGenerator.llm.value:
generator = LLMRAGQueryGenerator(generator_config)
generator = LLMRAGQueryGenerator(generator_config, **kwargs)
else:
raise NotImplementedError(
f"Unsupported memory query generator {generator_config.type}"
)
query = await generator.gen(messages)
cprint(f"Generated query >>>: {query}", color="green")
# cprint(f"Generated query >>>: {query}", color="green")
return query
class DefaultRAGQueryGenerator:
def __init__(self, config: DefaultMemoryQueryGeneratorConfig):
def __init__(self, config: DefaultMemoryQueryGeneratorConfig, **kwargs):
self.config = config
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
@ -52,11 +51,12 @@ class DefaultRAGQueryGenerator:
class LLMRAGQueryGenerator:
def __init__(self, config: LLMMemoryQueryGeneratorConfig):
def __init__(self, config: LLMMemoryQueryGeneratorConfig, **kwargs):
self.config = config
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
self.inference_api = kwargs["inference_api"]
async def gen(self, messages: List[Message]) -> InterleavedTextMedia:
# params will have
"""
Generates a query that will be used for
retrieving relevant information from the memory bank.
@ -69,15 +69,9 @@ class LLMRAGQueryGenerator:
template = Template(self.config.template)
content = template.render(m_dict)
cprint(f"Rendered Template >>>: {content}", color="yellow")
# TODO: How to manage these config params better ?
host = self.config.host
port = self.config.port
client = InferenceClient(f"http://{host}:{port}")
model = self.config.model
message = UserMessage(content=content)
response = client.chat_completion(
response = self.inference_api.chat_completion(
ChatCompletionRequest(
model=model,
messages=[message],