mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-08 04:54:38 +00:00
chore: fix flaky unit test and add proper shutdown for file batches (#3725)
# What does this PR do?
Have been running into flaky unit test failures:
5217035494
Fixing below
1. Shutting down properly by cancelling any stale file batches tasks
running in background.
2. Also, use unique_kvstore_config, so the test dont use same db path
and maintain test isolation
## Test Plan
Ran unit test locally and CI
This commit is contained in:
parent
1970b4aa4b
commit
c2d97a9db9
9 changed files with 39 additions and 17 deletions
|
@ -225,8 +225,8 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
await self.initialize_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# Cleanup if needed
|
||||
pass
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def health(self) -> HealthResponse:
|
||||
"""
|
||||
|
|
|
@ -434,8 +434,8 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
await self.initialize_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# nothing to do since we don't maintain a persistent connection
|
||||
pass
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def list_vector_dbs(self) -> list[VectorDB]:
|
||||
return [v.vector_db for v in self.cache.values()]
|
||||
|
|
|
@ -167,7 +167,8 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
|
|
|
@ -349,6 +349,8 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
|
|
|
@ -390,6 +390,8 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
if self.conn is not None:
|
||||
self.conn.close()
|
||||
log.info("Connection to PGVector database server closed")
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
# Persist vector DB metadata in the KV store
|
||||
|
|
|
@ -191,6 +191,8 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
async def shutdown(self) -> None:
|
||||
await self.client.close()
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
|
|
|
@ -347,6 +347,8 @@ class WeaviateVectorIOAdapter(
|
|||
async def shutdown(self) -> None:
|
||||
for client in self.client_cache.values():
|
||||
client.close()
|
||||
# Clean up mixin resources (file batch tasks)
|
||||
await super().shutdown()
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
|
|
|
@ -293,6 +293,19 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
await self._resume_incomplete_batches()
|
||||
self._last_file_batch_cleanup_time = 0
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
"""Clean up mixin resources including background tasks."""
|
||||
# Cancel any running file batch tasks gracefully
|
||||
if hasattr(self, "_file_batch_tasks"):
|
||||
tasks_to_cancel = list(self._file_batch_tasks.items())
|
||||
for _, task in tasks_to_cancel:
|
||||
if not task.done():
|
||||
task.cancel()
|
||||
try:
|
||||
await task
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a vector store."""
|
||||
|
|
|
@ -145,10 +145,10 @@ async def sqlite_vec_vec_index(embedding_dimension, tmp_path_factory):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
async def sqlite_vec_adapter(sqlite_vec_db_path, mock_inference_api, embedding_dimension):
|
||||
async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inference_api, embedding_dimension):
|
||||
config = SQLiteVectorIOConfig(
|
||||
db_path=sqlite_vec_db_path,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
kvstore=unique_kvstore_config,
|
||||
)
|
||||
adapter = SQLiteVecVectorIOAdapter(
|
||||
config=config,
|
||||
|
@ -187,10 +187,10 @@ async def milvus_vec_index(milvus_vec_db_path, embedding_dimension):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
async def milvus_vec_adapter(milvus_vec_db_path, mock_inference_api):
|
||||
async def milvus_vec_adapter(milvus_vec_db_path, unique_kvstore_config, mock_inference_api):
|
||||
config = MilvusVectorIOConfig(
|
||||
db_path=milvus_vec_db_path,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
kvstore=unique_kvstore_config,
|
||||
)
|
||||
adapter = MilvusVectorIOAdapter(
|
||||
config=config,
|
||||
|
@ -264,10 +264,10 @@ async def chroma_vec_index(chroma_vec_db_path, embedding_dimension):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
async def chroma_vec_adapter(chroma_vec_db_path, mock_inference_api, embedding_dimension):
|
||||
async def chroma_vec_adapter(chroma_vec_db_path, unique_kvstore_config, mock_inference_api, embedding_dimension):
|
||||
config = ChromaVectorIOConfig(
|
||||
db_path=chroma_vec_db_path,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
kvstore=unique_kvstore_config,
|
||||
)
|
||||
adapter = ChromaVectorIOAdapter(
|
||||
config=config,
|
||||
|
@ -296,12 +296,12 @@ def qdrant_vec_db_path(tmp_path_factory):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
async def qdrant_vec_adapter(qdrant_vec_db_path, mock_inference_api, embedding_dimension):
|
||||
async def qdrant_vec_adapter(qdrant_vec_db_path, unique_kvstore_config, mock_inference_api, embedding_dimension):
|
||||
import uuid
|
||||
|
||||
config = QdrantVectorIOConfig(
|
||||
db_path=qdrant_vec_db_path,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
kvstore=unique_kvstore_config,
|
||||
)
|
||||
adapter = QdrantVectorIOAdapter(
|
||||
config=config,
|
||||
|
@ -386,14 +386,14 @@ async def pgvector_vec_index(embedding_dimension, mock_psycopg2_connection):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
async def pgvector_vec_adapter(mock_inference_api, embedding_dimension):
|
||||
async def pgvector_vec_adapter(unique_kvstore_config, mock_inference_api, embedding_dimension):
|
||||
config = PGVectorVectorIOConfig(
|
||||
host="localhost",
|
||||
port=5432,
|
||||
db="test_db",
|
||||
user="test_user",
|
||||
password="test_password",
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
kvstore=unique_kvstore_config,
|
||||
)
|
||||
|
||||
adapter = PGVectorVectorIOAdapter(config, mock_inference_api, None)
|
||||
|
@ -476,7 +476,7 @@ async def weaviate_vec_index(weaviate_vec_db_path):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
async def weaviate_vec_adapter(weaviate_vec_db_path, mock_inference_api, embedding_dimension):
|
||||
async def weaviate_vec_adapter(weaviate_vec_db_path, unique_kvstore_config, mock_inference_api, embedding_dimension):
|
||||
import pytest_socket
|
||||
import weaviate
|
||||
|
||||
|
@ -492,7 +492,7 @@ async def weaviate_vec_adapter(weaviate_vec_db_path, mock_inference_api, embeddi
|
|||
config = WeaviateVectorIOConfig(
|
||||
weaviate_cluster_url="localhost:8080",
|
||||
weaviate_api_key=None,
|
||||
kvstore=SqliteKVStoreConfig(),
|
||||
kvstore=unique_kvstore_config,
|
||||
)
|
||||
adapter = WeaviateVectorIOAdapter(
|
||||
config=config,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue