Merge branch 'main' into rm-faiss-file

This commit is contained in:
raghotham 2025-07-14 10:57:14 -07:00 committed by GitHub
commit c30e343fbb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 102 additions and 4 deletions

View file

@ -14796,7 +14796,8 @@
"description": "Template for formatting each retrieved chunk in the context. Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict). Default: \"Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n\""
},
"mode": {
"type": "string",
"$ref": "#/components/schemas/RAGSearchMode",
"default": "vector",
"description": "Search mode for retrieval—either \"vector\", \"keyword\", or \"hybrid\". Default \"vector\"."
},
"ranker": {
@ -14831,6 +14832,16 @@
}
}
},
"RAGSearchMode": {
"type": "string",
"enum": [
"vector",
"keyword",
"hybrid"
],
"title": "RAGSearchMode",
"description": "Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search for semantic matching - KEYWORD: Uses keyword-based search for exact matching - HYBRID: Combines both vector and keyword search for better results"
},
"RRFRanker": {
"type": "object",
"properties": {

View file

@ -10346,7 +10346,8 @@ components:
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
{chunk.content}\nMetadata: {metadata}\n"
mode:
type: string
$ref: '#/components/schemas/RAGSearchMode'
default: vector
description: >-
Search mode for retrieval—either "vector", "keyword", or "hybrid". Default
"vector".
@ -10373,6 +10374,17 @@ components:
mapping:
default: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
llm: '#/components/schemas/LLMRAGQueryGeneratorConfig'
RAGSearchMode:
type: string
enum:
- vector
- keyword
- hybrid
title: RAGSearchMode
description: >-
Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search
for semantic matching - KEYWORD: Uses keyword-based search for exact matching
- HYBRID: Combines both vector and keyword search for better results
RRFRanker:
type: object
properties:

View file

@ -145,6 +145,10 @@ $ llama stack build --template starter
...
You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml`
```
```{tip}
The generated `run.yaml` file is a starting point for your configuration. For comprehensive guidance on customizing it for your specific needs, infrastructure, and deployment scenarios, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md).
```
:::
:::{tab-item} Building from Scratch

View file

@ -2,6 +2,10 @@
The Llama Stack runtime configuration is specified as a YAML file. Here is a simplified version of an example configuration file for the Ollama distribution:
```{note}
The default `run.yaml` files generated by templates are starting points for your configuration. For guidance on customizing these files for your specific needs, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md).
```
```{dropdown} 👋 Click here for a Sample Configuration File
```yaml

View file

@ -0,0 +1,40 @@
# Customizing run.yaml Files
The `run.yaml` files generated by Llama Stack templates are **starting points** designed to be customized for your specific needs. They are not meant to be used as-is in production environments.
## Key Points
- **Templates are starting points**: Generated `run.yaml` files contain defaults for development/testing
- **Customization expected**: Update URLs, credentials, models, and settings for your environment
- **Version control separately**: Keep customized configs in your own repository
- **Environment-specific**: Create different configurations for dev, staging, production
## What You Can Customize
You can customize:
- **Provider endpoints**: Change `http://localhost:8000` to your actual servers
- **Swap providers**: Replace default providers (e.g., swap Tavily with Brave for search)
- **Storage paths**: Move from `/tmp/` to production directories
- **Authentication**: Add API keys, SSL, timeouts
- **Models**: Different model sizes for dev vs prod
- **Database settings**: Switch from SQLite to PostgreSQL
- **Tool configurations**: Add custom tools and integrations
## Best Practices
- Use environment variables for secrets and environment-specific values
- Create separate `run.yaml` files for different environments (dev, staging, prod)
- Document your changes with comments
- Test configurations before deployment
- Keep your customized configs in version control
Example structure:
```
your-project/
├── configs/
│ ├── dev-run.yaml
│ ├── prod-run.yaml
└── README.md
```
The goal is to take the generated template and adapt it to your specific infrastructure and operational needs.

View file

@ -9,6 +9,7 @@ This section provides an overview of the distributions available in Llama Stack.
importing_as_library
configuration
customizing_run_yaml
list_of_distributions
kubernetes_deployment
building_distro

View file

@ -54,7 +54,7 @@ Llama Stack is a server that exposes multiple APIs, you connect with it using th
You can use Python to build and run the Llama Stack server, which is useful for testing and development.
Llama Stack uses a [YAML configuration file](../distributions/configuration.md) to specify the stack setup,
which defines the providers and their settings.
which defines the providers and their settings. The generated configuration serves as a starting point that you can [customize for your specific needs](../distributions/customizing_run_yaml.md).
Now let's build and run the Llama Stack config for Ollama.
We use `starter` as template. By default all providers are disabled, this requires enable ollama by passing environment variables.

View file

@ -87,6 +87,20 @@ class RAGQueryGenerator(Enum):
custom = "custom"
@json_schema_type
class RAGSearchMode(Enum):
"""
Search modes for RAG query retrieval:
- VECTOR: Uses vector similarity search for semantic matching
- KEYWORD: Uses keyword-based search for exact matching
- HYBRID: Combines both vector and keyword search for better results
"""
VECTOR = "vector"
KEYWORD = "keyword"
HYBRID = "hybrid"
@json_schema_type
class DefaultRAGQueryGeneratorConfig(BaseModel):
type: Literal["default"] = "default"
@ -128,7 +142,7 @@ class RAGQueryConfig(BaseModel):
max_tokens_in_context: int = 4096
max_chunks: int = 5
chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
mode: str | None = None
mode: RAGSearchMode | None = RAGSearchMode.VECTOR
ranker: Ranker | None = Field(default=None) # Only used for hybrid mode
@field_validator("chunk_template")

View file

@ -8,6 +8,7 @@ from unittest.mock import AsyncMock, MagicMock
import pytest
from llama_stack.apis.tools.rag_tool import RAGQueryConfig
from llama_stack.apis.vector_io import (
Chunk,
ChunkMetadata,
@ -58,3 +59,14 @@ class TestRagQuery:
)
assert expected_metadata_string in result.content[1].text
assert result.content is not None
async def test_query_raises_incorrect_mode(self):
with pytest.raises(ValueError):
RAGQueryConfig(mode="invalid_mode")
@pytest.mark.asyncio
async def test_query_accepts_valid_modes(self):
RAGQueryConfig() # Test default (vector)
RAGQueryConfig(mode="vector") # Test vector
RAGQueryConfig(mode="keyword") # Test keyword
RAGQueryConfig(mode="hybrid") # Test hybrid