temp commit

This commit is contained in:
Botao Chen 2024-11-26 21:23:56 -08:00
parent 90add9fed0
commit c31a78dfcb
7 changed files with 92 additions and 19 deletions

View file

@ -8,6 +8,7 @@ from llama_stack.providers.inline.post_training.meta_reference.config import (
MetaReferencePostTrainingConfig,
)
from llama_stack.apis.post_training import * # noqa
from llama_stack.providers.inline.post_training.meta_reference.recipes.lora_finetuning_single_device import (
LoraFinetuningSingleDevice,
)
@ -20,17 +21,45 @@ class MetaReferencePostTrainingImpl:
self.config = config
self.datasetio_api = datasetio_api
LoraFinetuningConfig(
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
apply_lora_to_mlp=True,
apply_lora_to_output=False,
rank=8,
alpha=16,
)
OptimizerConfig(
lr=3e-4,
lr_min=3e-5,
weight_decay=0.1,
num_warmup_steps=100,
)
TrainingConfig(
dtype="bf16",
n_epochs=1,
max_steps_per_epoch=10,
gradient_accumulation_steps=1,
batch_size=1,
shuffle=1,
enable_activation_checkpointing=False,
memory_efficient_fsdp_wrap=False,
fsdp_cpu_offload=False,
)
def supervised_fine_tune(
self,
job_uuid: str,
model: str,
dataset_id: str,
validation_dataset_id: str,
algorithm: FinetuningAlgorithm,
algorithm_config: LoraFinetuningConfig,
optimizer_config: OptimizerConfig,
training_config: TrainingConfig,
logger_config: Dict[str, Any],
job_uuid: str = "1234",
model: str = " meta-llama/Llama-3.2-3B-Instruct",
dataset_id: str = "alpaca",
validation_dataset_id: str = "alpaca",
algorithm: FinetuningAlgorithm = FinetuningAlgorithm.lora,
algorithm_config: LoraFinetuningConfig = LoraFinetuningConfig,
optimizer_config: OptimizerConfig = OptimizerConfig,
training_config: TrainingConfig = TrainingConfig,
hyperparam_search_config: Dict[str, Any] = {},
logger_config: Dict[str, Any] = {},
) -> PostTrainingJob:
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = PostTrainingSFTRequest(
@ -54,3 +83,36 @@ class MetaReferencePostTrainingImpl:
raise NotImplementedError()
return PostTrainingJob(job_uuid=job_uuid)
def preference_optimize(
self,
job_uuid: str,
finetuned_model: URL,
dataset_id: str,
validation_dataset_id: str,
algorithm: RLHFAlgorithm,
algorithm_config: DPOAlignmentConfig,
optimizer_config: OptimizerConfig,
training_config: TrainingConfig,
hyperparam_search_config: Dict[str, Any],
logger_config: Dict[str, Any],
) -> PostTrainingJob: ...
def get_training_jobs(self) -> List[PostTrainingJob]: ...
# sends SSE stream of logs
@webmethod(route="/post-training/job/logs")
def get_training_job_logstream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
@webmethod(route="/post-training/job/status")
def get_training_job_status(
self, job_uuid: str
) -> PostTrainingJobStatusResponse: ...
@webmethod(route="/post-training/job/cancel")
def cancel_training_job(self, job_uuid: str) -> None: ...
@webmethod(route="/post-training/job/artifacts")
def get_training_job_artifacts(
self, job_uuid: str
) -> PostTrainingJobArtifactsResponse: ...

View file

@ -38,7 +38,7 @@ from torchtune.modules.peft import (
set_trainable_params,
validate_missing_and_unexpected_for_lora,
)
from torchtune.training.lr_scheduler import get_cosine_schedule_with_warmup
from torchtune.training.lr_schedulers import get_cosine_schedule_with_warmup
log = logging.getLogger(__name__)

View file

@ -12,6 +12,7 @@ from llama_stack.distribution.datatypes import * # noqa: F403
META_REFERENCE_DEPS = [
"torch",
"torchtune",
"torchao",
"numpy",
]
@ -24,5 +25,8 @@ def available_providers() -> List[ProviderSpec]:
pip_packages=META_REFERENCE_DEPS,
module="llama_stack.providers.inline.post_training.meta_reference",
config_class="llama_stack.providers.inline.post_training.meta_reference.MetaReferencePostTrainingConfig",
api_dependencies=[
Api.datasetio,
],
),
]