mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-05 10:23:44 +00:00
featu: support passing "extra body" throught to providers
# What does this PR do? Allows passing through extra_body parameters to inference providers. closes #2720 ## Test Plan CI and added new test
This commit is contained in:
parent
361fcaf2f3
commit
c40d8dcbee
3 changed files with 59 additions and 0 deletions
|
|
@ -230,6 +230,9 @@ class LiteLLMOpenAIMixin(
|
||||||
) -> OpenAICompletion:
|
) -> OpenAICompletion:
|
||||||
model_obj = await self.model_store.get_model(params.model)
|
model_obj = await self.model_store.get_model(params.model)
|
||||||
|
|
||||||
|
# Extract extra fields
|
||||||
|
extra_body = dict(params.__pydantic_extra__ or {})
|
||||||
|
|
||||||
request_params = await prepare_openai_completion_params(
|
request_params = await prepare_openai_completion_params(
|
||||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||||
prompt=params.prompt,
|
prompt=params.prompt,
|
||||||
|
|
@ -253,6 +256,7 @@ class LiteLLMOpenAIMixin(
|
||||||
suffix=params.suffix,
|
suffix=params.suffix,
|
||||||
api_key=self.get_api_key(),
|
api_key=self.get_api_key(),
|
||||||
api_base=self.api_base,
|
api_base=self.api_base,
|
||||||
|
**extra_body,
|
||||||
)
|
)
|
||||||
return await litellm.atext_completion(**request_params)
|
return await litellm.atext_completion(**request_params)
|
||||||
|
|
||||||
|
|
@ -272,6 +276,9 @@ class LiteLLMOpenAIMixin(
|
||||||
|
|
||||||
model_obj = await self.model_store.get_model(params.model)
|
model_obj = await self.model_store.get_model(params.model)
|
||||||
|
|
||||||
|
# Extract extra fields
|
||||||
|
extra_body = dict(params.__pydantic_extra__ or {})
|
||||||
|
|
||||||
request_params = await prepare_openai_completion_params(
|
request_params = await prepare_openai_completion_params(
|
||||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||||
messages=params.messages,
|
messages=params.messages,
|
||||||
|
|
@ -298,6 +305,7 @@ class LiteLLMOpenAIMixin(
|
||||||
user=params.user,
|
user=params.user,
|
||||||
api_key=self.get_api_key(),
|
api_key=self.get_api_key(),
|
||||||
api_base=self.api_base,
|
api_base=self.api_base,
|
||||||
|
**extra_body,
|
||||||
)
|
)
|
||||||
return await litellm.acompletion(**request_params)
|
return await litellm.acompletion(**request_params)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -228,6 +228,9 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
||||||
"""
|
"""
|
||||||
Direct OpenAI completion API call.
|
Direct OpenAI completion API call.
|
||||||
"""
|
"""
|
||||||
|
# Extract extra fields using Pydantic's built-in __pydantic_extra__
|
||||||
|
extra_body = dict(params.__pydantic_extra__ or {})
|
||||||
|
|
||||||
# Handle parameters that are not supported by OpenAI API, but may be by the provider
|
# Handle parameters that are not supported by OpenAI API, but may be by the provider
|
||||||
# prompt_logprobs is supported by vLLM
|
# prompt_logprobs is supported by vLLM
|
||||||
# guided_choice is supported by vLLM
|
# guided_choice is supported by vLLM
|
||||||
|
|
@ -316,6 +319,9 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
||||||
user=params.user,
|
user=params.user,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Extract any additional provider-specific parameters using Pydantic's __pydantic_extra__
|
||||||
|
if extra_body := dict(params.__pydantic_extra__ or {}):
|
||||||
|
request_params["extra_body"] = extra_body
|
||||||
resp = await self.client.chat.completions.create(**request_params)
|
resp = await self.client.chat.completions.create(**request_params)
|
||||||
|
|
||||||
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]
|
return await self._maybe_overwrite_id(resp, params.stream) # type: ignore[no-any-return]
|
||||||
|
|
|
||||||
|
|
@ -191,3 +191,48 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
|
||||||
|
|
||||||
assert mock_create_client.call_count == 4 # no cheating
|
assert mock_create_client.call_count == 4 # no cheating
|
||||||
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
|
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
|
||||||
|
|
||||||
|
|
||||||
|
async def test_extra_body_forwarding(vllm_inference_adapter):
|
||||||
|
"""
|
||||||
|
Test that extra_body parameters (e.g., chat_template_kwargs) are correctly
|
||||||
|
forwarded to the underlying OpenAI client.
|
||||||
|
"""
|
||||||
|
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
|
||||||
|
vllm_inference_adapter.model_store.get_model.return_value = mock_model
|
||||||
|
|
||||||
|
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
|
||||||
|
mock_client = MagicMock()
|
||||||
|
mock_client.chat.completions.create = AsyncMock(
|
||||||
|
return_value=OpenAIChatCompletion(
|
||||||
|
id="chatcmpl-abc123",
|
||||||
|
created=1,
|
||||||
|
model="mock-model",
|
||||||
|
choices=[
|
||||||
|
OpenAIChoice(
|
||||||
|
message=OpenAIAssistantMessageParam(
|
||||||
|
content="test response",
|
||||||
|
),
|
||||||
|
finish_reason="stop",
|
||||||
|
index=0,
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
mock_client_property.return_value = mock_client
|
||||||
|
|
||||||
|
# Test with chat_template_kwargs for Granite thinking mode
|
||||||
|
params = OpenaiChatCompletionRequest(
|
||||||
|
model="mock-model",
|
||||||
|
messages=[{"role": "user", "content": "test"}],
|
||||||
|
stream=False,
|
||||||
|
chat_template_kwargs={"thinking": True},
|
||||||
|
)
|
||||||
|
await vllm_inference_adapter.openai_chat_completion(params)
|
||||||
|
|
||||||
|
# Verify that the client was called with extra_body containing chat_template_kwargs
|
||||||
|
mock_client.chat.completions.create.assert_called_once()
|
||||||
|
call_kwargs = mock_client.chat.completions.create.call_args.kwargs
|
||||||
|
assert "extra_body" in call_kwargs
|
||||||
|
assert "chat_template_kwargs" in call_kwargs["extra_body"]
|
||||||
|
assert call_kwargs["extra_body"]["chat_template_kwargs"] == {"thinking": True}
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue