feat: consolidate most distros into "starter" (#2516)

# What does this PR do?

* Removes a bunch of distros
* Removed distros were added into the "starter" distribution
* Doc for "starter" has been added
* Partially reverts https://github.com/meta-llama/llama-stack/pull/2482
  since inference providers are disabled by default and can be turned on
  manually via env variable.
* Disables safety in starter distro

Closes: https://github.com/meta-llama/llama-stack/issues/2502.

~Needs: https://github.com/meta-llama/llama-stack/pull/2482 for Ollama
to work properly in the CI.~

TODO:

- [ ] We can only update `install.sh` when we get a new release.
- [x] Update providers documentation
- [ ] Update notebooks to reference starter instead of ollama

Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
Sébastien Han 2025-07-04 15:58:03 +02:00 committed by GitHub
parent f77d4d91f5
commit c4349f532b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
132 changed files with 1009 additions and 10845 deletions

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .cerebras import get_distribution_template # noqa: F401

View file

@ -1,34 +0,0 @@
version: 2
distribution_spec:
description: Use Cerebras for running LLM inference
providers:
inference:
- remote::cerebras
- inline::sentence-transformers
safety:
- inline::llama-guard
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector
agents:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
telemetry:
- inline::meta-reference
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
image_type: conda
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]

View file

@ -1,110 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupInput
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
from llama_stack.providers.remote.inference.cerebras.models import MODEL_ENTRIES
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
get_model_registry,
)
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::cerebras", "inline::sentence-transformers"],
"safety": ["inline::llama-guard"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"agents": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"telemetry": ["inline::meta-reference"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
],
}
name = "cerebras"
inference_provider = Provider(
provider_id="cerebras",
provider_type="remote::cerebras",
config=CerebrasImplConfig.sample_run_config(),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
available_models = {
"cerebras": MODEL_ENTRIES,
}
default_models = get_model_registry(available_models)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
return DistributionTemplate(
name="cerebras",
distro_type="self_hosted",
description="Use Cerebras for running LLM inference",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"vector_io": [vector_io_provider],
},
default_models=default_models + [embedding_model],
default_shields=[],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"CEREBRAS_API_KEY": (
"",
"Cerebras API Key",
),
},
)

View file

@ -1,61 +0,0 @@
# Cerebras Distribution
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{% if default_models %}
### Models
The following models are available by default:
{% for model in default_models %}
- `{{ model.model_id }} {{ model.doc_string }}`
{% endfor %}
{% endif %}
### Prerequisite: API Keys
Make sure you have access to a Cerebras API Key. You can get one by visiting [cloud.cerebras.ai](https://cloud.cerebras.ai/).
## Running Llama Stack with Cerebras
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```
### Via Conda
```bash
llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
--port 8321 \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
```

View file

@ -1,140 +0,0 @@
version: 2
image_name: cerebras
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: cerebras
provider_type: remote::cerebras
config:
base_url: https://api.cerebras.ai
api_key: ${env.CEREBRAS_API_KEY}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/faiss_store.db
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/responses_store.db
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/meta_reference_eval.db
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/huggingface_datasetio.db
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/localfs_datasetio.db
scoring:
- provider_id: basic
provider_type: inline::basic
config: {}
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
config: {}
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/trace_store.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/cerebras}/inference_store.db
models:
- metadata: {}
model_id: llama3.1-8b
provider_id: cerebras
provider_model_id: llama3.1-8b
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: cerebras
provider_model_id: llama3.1-8b
model_type: llm
- metadata: {}
model_id: llama-3.3-70b
provider_id: cerebras
provider_model_id: llama-3.3-70b
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: cerebras
provider_model_id: llama-3.3-70b
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8321