feat: consolidate most distros into "starter" (#2516)

# What does this PR do?

* Removes a bunch of distros
* Removed distros were added into the "starter" distribution
* Doc for "starter" has been added
* Partially reverts https://github.com/meta-llama/llama-stack/pull/2482
  since inference providers are disabled by default and can be turned on
  manually via env variable.
* Disables safety in starter distro

Closes: https://github.com/meta-llama/llama-stack/issues/2502.

~Needs: https://github.com/meta-llama/llama-stack/pull/2482 for Ollama
to work properly in the CI.~

TODO:

- [ ] We can only update `install.sh` when we get a new release.
- [x] Update providers documentation
- [ ] Update notebooks to reference starter instead of ollama

Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
Sébastien Han 2025-07-04 15:58:03 +02:00 committed by GitHub
parent f77d4d91f5
commit c4349f532b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
132 changed files with 1009 additions and 10845 deletions

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .sambanova import get_distribution_template # noqa: F401

View file

@ -1,27 +0,0 @@
version: 2
distribution_spec:
description: Use SambaNova for running LLM inference and safety
providers:
inference:
- remote::sambanova
- inline::sentence-transformers
vector_io:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety:
- remote::sambanova
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::rag-runtime
- remote::model-context-protocol
- remote::wolfram-alpha
image_type: conda
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]

View file

@ -1,80 +0,0 @@
---
orphan: true
---
# SambaNova Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{% if default_models %}
### Models
The following models are available by default:
{% for model in default_models %}
- `{{ model.model_id }} {{ model.doc_string }}`
{% endfor %}
{% endif %}
### Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](http://cloud.sambanova.ai?utm_source=llamastack&utm_medium=external&utm_campaign=cloud_signup).
## Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
```bash
LLAMA_STACK_PORT=8321
llama stack build --template sambanova --image-type container
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Venv
```bash
llama stack build --template sambanova --image-type venv
llama stack run --image-type venv ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Conda
```bash
llama stack build --template sambanova --image-type conda
llama stack run --image-type conda ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

View file

@ -1,212 +0,0 @@
version: 2
image_name: sambanova
apis:
- agents
- inference
- safety
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: sambanova
provider_type: remote::sambanova
config:
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/sambanova}/faiss_store.db
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
- provider_id: ${env.ENABLE_PGVECTOR:+pgvector}
provider_type: remote::pgvector
config:
host: ${env.PGVECTOR_HOST:=localhost}
port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
safety:
- provider_id: sambanova
provider_type: remote::sambanova
config:
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/sambanova}/agents_store.db
responses_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/sambanova}/responses_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/sambanova}/trace_store.db
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
- provider_id: wolfram-alpha
provider_type: remote::wolfram-alpha
config:
api_key: ${env.WOLFRAM_ALPHA_API_KEY:=}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/sambanova}/registry.db
inference_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/sambanova}/inference_store.db
models:
- metadata: {}
model_id: sambanova/Meta-Llama-3.1-8B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.1-8B-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-8B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.1-8B-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Meta-Llama-3.1-405B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.1-405B-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.1-405B-Instruct-FP8
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.1-405B-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Meta-Llama-3.2-1B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.2-1B-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-1B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.2-1B-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Meta-Llama-3.2-3B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.2-3B-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-3B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.2-3B-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Meta-Llama-3.3-70B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.3-70B-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.3-70B-Instruct
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-3.3-70B-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Llama-3.2-11B-Vision-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-3.2-11B-Vision-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-3.2-11B-Vision-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Llama-3.2-90B-Vision-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-3.2-90B-Vision-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-3.2-90B-Vision-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Llama-4-Scout-17B-16E-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-4-Scout-17B-16E-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-4-Scout-17B-16E-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Llama-4-Maverick-17B-128E-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-4-Maverick-17B-128E-Instruct
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct
provider_id: sambanova
provider_model_id: sambanova/Llama-4-Maverick-17B-128E-Instruct
model_type: llm
- metadata: {}
model_id: sambanova/Meta-Llama-Guard-3-8B
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-Guard-3-8B
model_type: llm
- metadata: {}
model_id: meta-llama/Llama-Guard-3-8B
provider_id: sambanova
provider_model_id: sambanova/Meta-Llama-Guard-3-8B
model_type: llm
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
provider_shield_id: sambanova/Meta-Llama-Guard-3-8B
- shield_id: sambanova/Meta-Llama-Guard-3-8B
provider_shield_id: sambanova/Meta-Llama-Guard-3-8B
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
- toolgroup_id: builtin::wolfram_alpha
provider_id: wolfram-alpha
server:
port: 8321

View file

@ -1,147 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.providers.remote.inference.sambanova import SambaNovaImplConfig
from llama_stack.providers.remote.inference.sambanova.models import MODEL_ENTRIES
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.remote.vector_io.pgvector.config import (
PGVectorVectorIOConfig,
)
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
get_model_registry,
)
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::sambanova", "inline::sentence-transformers"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["remote::sambanova"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::rag-runtime",
"remote::model-context-protocol",
"remote::wolfram-alpha",
],
}
name = "sambanova"
inference_provider = Provider(
provider_id=name,
provider_type=f"remote::{name}",
config=SambaNovaImplConfig.sample_run_config(),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
vector_io_providers = [
Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(
__distro_dir__=f"~/.llama/distributions/{name}",
),
),
Provider(
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:=}"),
),
Provider(
provider_id="${env.ENABLE_PGVECTOR:+pgvector}",
provider_type="remote::pgvector",
config=PGVectorVectorIOConfig.sample_run_config(
db="${env.PGVECTOR_DB:=}",
user="${env.PGVECTOR_USER:=}",
password="${env.PGVECTOR_PASSWORD:=}",
),
),
]
available_models = {
name: MODEL_ENTRIES,
}
default_models = get_model_registry(available_models)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::wolfram_alpha",
provider_id="wolfram-alpha",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use SambaNova for running LLM inference and safety",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
available_models_by_provider=available_models,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"vector_io": vector_io_providers,
},
default_models=default_models + [embedding_model],
default_shields=[
ShieldInput(
shield_id="meta-llama/Llama-Guard-3-8B", provider_shield_id="sambanova/Meta-Llama-Guard-3-8B"
),
ShieldInput(
shield_id="sambanova/Meta-Llama-Guard-3-8B",
provider_shield_id="sambanova/Meta-Llama-Guard-3-8B",
),
],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"SAMBANOVA_API_KEY": (
"",
"SambaNova API Key",
),
},
)