mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-03 19:57:35 +00:00
fix: prevent telemetry from leaking sensitive info
Prevent sensitive information from being logged in telemetry output by assigning SecretStr type to sensitive fields. API keys, password from KV store are now covered. All providers have been converted. Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
parent
8dc9fd6844
commit
c4cb6aa8d9
53 changed files with 121 additions and 109 deletions
|
@ -17,7 +17,7 @@ AWS S3-based file storage provider for scalable cloud file management with metad
|
|||
| `bucket_name` | `<class 'str'>` | No | | S3 bucket name to store files |
|
||||
| `region` | `<class 'str'>` | No | us-east-1 | AWS region where the bucket is located |
|
||||
| `aws_access_key_id` | `str \| None` | No | | AWS access key ID (optional if using IAM roles) |
|
||||
| `aws_secret_access_key` | `str \| None` | No | | AWS secret access key (optional if using IAM roles) |
|
||||
| `aws_secret_access_key` | `pydantic.types.SecretStr \| None` | No | | AWS secret access key (optional if using IAM roles) |
|
||||
| `endpoint_url` | `str \| None` | No | | Custom S3 endpoint URL (for MinIO, LocalStack, etc.) |
|
||||
| `auto_create_bucket` | `<class 'bool'>` | No | False | Automatically create the S3 bucket if it doesn't exist |
|
||||
| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata |
|
||||
|
|
|
@ -14,7 +14,7 @@ Anthropic inference provider for accessing Claude models and Anthropic's AI serv
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | API key for Anthropic models |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | API key for Anthropic models |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -15,8 +15,8 @@ AWS Bedrock inference provider for accessing various AI models through AWS's man
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
|
||||
| `aws_secret_access_key` | `str \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `str \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `aws_secret_access_key` | `pydantic.types.SecretStr \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `pydantic.types.SecretStr \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `region_name` | `str \| None` | No | | The default AWS Region to use, for example, us-west-1 or us-west-2.Default use environment variable: AWS_DEFAULT_REGION |
|
||||
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
|
||||
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |
|
||||
|
|
|
@ -14,7 +14,7 @@ Google Gemini inference provider for accessing Gemini models and Google's AI ser
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | API key for Gemini models |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | API key for Gemini models |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Groq inference provider for ultra-fast inference using Groq's LPU technology.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | The Groq API key |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Groq API key |
|
||||
| `url` | `<class 'str'>` | No | https://api.groq.com | The URL for the Groq AI server |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -14,7 +14,7 @@ Llama OpenAI-compatible provider for using Llama models with OpenAI API format.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | The Llama API key |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Llama API key |
|
||||
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.llama.com/compat/v1/ | The URL for the Llama API server |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -14,7 +14,7 @@ OpenAI inference provider for accessing GPT models and other OpenAI services.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | API key for OpenAI models |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | API key for OpenAI models |
|
||||
| `base_url` | `<class 'str'>` | No | https://api.openai.com/v1 | Base URL for OpenAI API |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -15,7 +15,7 @@ RunPod inference provider for running models on RunPod's cloud GPU platform.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `str \| None` | No | | The URL for the Runpod model serving endpoint |
|
||||
| `api_token` | `str \| None` | No | | The API token |
|
||||
| `api_token` | `pydantic.types.SecretStr \| None` | No | | The API token |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ Remote vLLM inference provider for connecting to vLLM servers.
|
|||
|-------|------|----------|---------|-------------|
|
||||
| `url` | `str \| None` | No | | The URL for the vLLM model serving endpoint |
|
||||
| `max_tokens` | `<class 'int'>` | No | 4096 | Maximum number of tokens to generate. |
|
||||
| `api_token` | `str \| None` | No | fake | The API token |
|
||||
| `api_token` | `pydantic.types.SecretStr \| None` | No | ********** | The API token |
|
||||
| `tls_verify` | `bool \| str` | No | True | Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file. |
|
||||
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically |
|
||||
|
||||
|
|
|
@ -15,8 +15,8 @@ AWS Bedrock safety provider for content moderation using AWS's safety services.
|
|||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
|
||||
| `aws_secret_access_key` | `str \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `str \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `aws_secret_access_key` | `pydantic.types.SecretStr \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
|
||||
| `aws_session_token` | `pydantic.types.SecretStr \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
|
||||
| `region_name` | `str \| None` | No | | The default AWS Region to use, for example, us-west-1 or us-west-2.Default use environment variable: AWS_DEFAULT_REGION |
|
||||
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
|
||||
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |
|
||||
|
|
|
@ -14,7 +14,7 @@ Braintrust scoring provider for evaluation and scoring using the Braintrust plat
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `openai_api_key` | `str \| None` | No | | The OpenAI API Key |
|
||||
| `openai_api_key` | `pydantic.types.SecretStr \| None` | No | | The OpenAI API Key |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ Bing Search tool for web search capabilities using Microsoft's search engine.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | |
|
||||
| `top_k` | `<class 'int'>` | No | 3 | |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -14,7 +14,7 @@ Brave Search tool for web search capabilities with privacy-focused results.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | The Brave Search API Key |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Brave Search API Key |
|
||||
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -14,7 +14,7 @@ Tavily Search tool for AI-optimized web search with structured results.
|
|||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `api_key` | `str \| None` | No | | The Tavily Search API Key |
|
||||
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Tavily Search API Key |
|
||||
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -217,7 +217,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
|
|||
| `port` | `int \| None` | No | 5432 | |
|
||||
| `db` | `str \| None` | No | postgres | |
|
||||
| `user` | `str \| None` | No | postgres | |
|
||||
| `password` | `str \| None` | No | mysecretpassword | |
|
||||
| `password` | `pydantic.types.SecretStr \| None` | No | mysecretpassword | |
|
||||
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
|
||||
|
||||
## Sample Configuration
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from llama_stack.core.datatypes import Api
|
||||
|
||||
|
@ -13,7 +13,7 @@ from .config import BraintrustScoringConfig
|
|||
|
||||
|
||||
class BraintrustProviderDataValidator(BaseModel):
|
||||
openai_api_key: str
|
||||
openai_api_key: SecretStr
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
|
|
|
@ -17,7 +17,7 @@ from autoevals.ragas import (
|
|||
ContextRelevancy,
|
||||
Faithfulness,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
|
@ -152,9 +152,9 @@ class BraintrustScoringImpl(
|
|||
raise ValueError(
|
||||
'Pass OpenAI API Key in the header X-LlamaStack-Provider-Data as { "openai_api_key": <your api key>}'
|
||||
)
|
||||
self.config.openai_api_key = provider_data.openai_api_key
|
||||
self.config.openai_api_key = SecretStr(provider_data.openai_api_key)
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = self.config.openai_api_key
|
||||
os.environ["OPENAI_API_KEY"] = self.config.openai_api_key.get_secret_value()
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
|
|
|
@ -5,11 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class BraintrustScoringConfig(BaseModel):
|
||||
openai_api_key: str | None = Field(
|
||||
openai_api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The OpenAI API Key",
|
||||
)
|
||||
|
|
|
@ -64,7 +64,9 @@ class ConsoleSpanProcessor(SpanProcessor):
|
|||
for key, value in event.attributes.items():
|
||||
if key.startswith("__") or key in ["message", "severity"]:
|
||||
continue
|
||||
logger.info(f"[dim]{key}[/dim]: {value}")
|
||||
|
||||
str_value = str(value)
|
||||
logger.info(f"[dim]{key}[/dim]: {str_value}")
|
||||
|
||||
def shutdown(self) -> None:
|
||||
"""Shutdown the processor."""
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
|
||||
|
||||
|
@ -17,7 +17,7 @@ class S3FilesImplConfig(BaseModel):
|
|||
bucket_name: str = Field(description="S3 bucket name to store files")
|
||||
region: str = Field(default="us-east-1", description="AWS region where the bucket is located")
|
||||
aws_access_key_id: str | None = Field(default=None, description="AWS access key ID (optional if using IAM roles)")
|
||||
aws_secret_access_key: str | None = Field(
|
||||
aws_secret_access_key: SecretStr | None = Field(
|
||||
default=None, description="AWS secret access key (optional if using IAM roles)"
|
||||
)
|
||||
endpoint_url: str | None = Field(default=None, description="Custom S3 endpoint URL (for MinIO, LocalStack, etc.)")
|
||||
|
|
|
@ -46,7 +46,7 @@ def _create_s3_client(config: S3FilesImplConfig) -> boto3.client:
|
|||
s3_config.update(
|
||||
{
|
||||
"aws_access_key_id": config.aws_access_key_id,
|
||||
"aws_secret_access_key": config.aws_secret_access_key,
|
||||
"aws_secret_access_key": config.aws_secret_access_key.get_secret_value(),
|
||||
}
|
||||
)
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
@ -27,7 +28,7 @@ class AnthropicInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="anthropic",
|
||||
api_key_from_config=config.api_key,
|
||||
api_key_from_config=config.api_key.get_secret_value() if config.api_key else None,
|
||||
provider_data_api_key_field="anthropic_api_key",
|
||||
)
|
||||
self.config = config
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class AnthropicProviderDataValidator(BaseModel):
|
||||
anthropic_api_key: str | None = Field(
|
||||
anthropic_api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for Anthropic models",
|
||||
)
|
||||
|
@ -20,7 +20,7 @@ class AnthropicProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AnthropicConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for Anthropic models",
|
||||
)
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class GeminiProviderDataValidator(BaseModel):
|
||||
gemini_api_key: str | None = Field(
|
||||
gemini_api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for Gemini models",
|
||||
)
|
||||
|
@ -20,7 +20,7 @@ class GeminiProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class GeminiConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for Gemini models",
|
||||
)
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
|
@ -19,7 +20,7 @@ class GeminiInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
litellm_provider_name="gemini",
|
||||
api_key_from_config=config.api_key,
|
||||
api_key_from_config=config.api_key.get_secret_value() if config.api_key else None,
|
||||
provider_data_api_key_field="gemini_api_key",
|
||||
)
|
||||
self.config = config
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class GroqProviderDataValidator(BaseModel):
|
||||
groq_api_key: str | None = Field(
|
||||
groq_api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for Groq models",
|
||||
)
|
||||
|
@ -20,7 +20,7 @@ class GroqProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class GroqConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
# The Groq client library loads the GROQ_API_KEY environment variable by default
|
||||
default=None,
|
||||
description="The Groq API key",
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class LlamaProviderDataValidator(BaseModel):
|
||||
llama_api_key: str | None = Field(
|
||||
llama_api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for api.llama models",
|
||||
)
|
||||
|
@ -20,7 +20,7 @@ class LlamaProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class LlamaCompatConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The Llama API key",
|
||||
)
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class OpenAIProviderDataValidator(BaseModel):
|
||||
openai_api_key: str | None = Field(
|
||||
openai_api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for OpenAI models",
|
||||
)
|
||||
|
@ -20,7 +20,7 @@ class OpenAIProviderDataValidator(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class OpenAIConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="API key for OpenAI models",
|
||||
)
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
@ -17,7 +17,7 @@ class RunpodImplConfig(BaseModel):
|
|||
default=None,
|
||||
description="The URL for the Runpod model serving endpoint",
|
||||
)
|
||||
api_token: str | None = Field(
|
||||
api_token: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The API token",
|
||||
)
|
||||
|
|
|
@ -103,7 +103,10 @@ class RunpodInferenceAdapter(
|
|||
tool_config=tool_config,
|
||||
)
|
||||
|
||||
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
||||
client = OpenAI(
|
||||
base_url=self.config.url,
|
||||
api_key=self.config.api_token.get_secret_value() if self.config.api_token else None,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
else:
|
||||
|
|
|
@ -8,6 +8,7 @@ from typing import Any
|
|||
|
||||
import google.auth.transport.requests
|
||||
from google.auth import default
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import ChatCompletionRequest
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
|
||||
|
@ -43,7 +44,7 @@ class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
|
|||
except Exception:
|
||||
# If we can't get credentials, return empty string to let LiteLLM handle it
|
||||
# This allows the LiteLLM mixin to work with ADC directly
|
||||
return ""
|
||||
return SecretStr("")
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, Field, SecretStr, field_validator
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
@ -21,8 +21,8 @@ class VLLMInferenceAdapterConfig(BaseModel):
|
|||
default=4096,
|
||||
description="Maximum number of tokens to generate.",
|
||||
)
|
||||
api_token: str | None = Field(
|
||||
default="fake",
|
||||
api_token: SecretStr | None = Field(
|
||||
default=SecretStr("fake"),
|
||||
description="The API token",
|
||||
)
|
||||
tls_verify: bool | str = Field(
|
||||
|
|
|
@ -294,7 +294,7 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
self,
|
||||
model_entries=build_hf_repo_model_entries(),
|
||||
litellm_provider_name="vllm",
|
||||
api_key_from_config=config.api_token,
|
||||
api_key_from_config=config.api_token.get_secret_value(),
|
||||
provider_data_api_key_field="vllm_api_token",
|
||||
openai_compat_api_base=config.url,
|
||||
)
|
||||
|
|
|
@ -40,7 +40,7 @@ class BingSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsReq
|
|||
|
||||
def _get_api_key(self) -> str:
|
||||
if self.config.api_key:
|
||||
return self.config.api_key
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.bing_search_api_key:
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
|
||||
class BingSearchToolConfig(BaseModel):
|
||||
"""Configuration for Bing Search Tool Runtime"""
|
||||
|
||||
api_key: str | None = None
|
||||
api_key: SecretStr | None = None
|
||||
top_k: int = 3
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -39,7 +39,7 @@ class BraveSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRe
|
|||
|
||||
def _get_api_key(self) -> str:
|
||||
if self.config.api_key:
|
||||
return self.config.api_key
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.brave_search_api_key:
|
||||
|
|
|
@ -6,11 +6,11 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class BraveSearchToolConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The Brave Search API Key",
|
||||
)
|
||||
|
|
|
@ -6,11 +6,11 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class TavilySearchToolConfig(BaseModel):
|
||||
api_key: str | None = Field(
|
||||
api_key: SecretStr | None = Field(
|
||||
default=None,
|
||||
description="The Tavily Search API Key",
|
||||
)
|
||||
|
|
|
@ -39,7 +39,7 @@ class TavilySearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsR
|
|||
|
||||
def _get_api_key(self) -> str:
|
||||
if self.config.api_key:
|
||||
return self.config.api_key
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.tavily_search_api_key:
|
||||
|
|
|
@ -40,7 +40,7 @@ class WolframAlphaToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsR
|
|||
|
||||
def _get_api_key(self) -> str:
|
||||
if self.config.api_key:
|
||||
return self.config.api_key
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.wolfram_alpha_api_key:
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
|
@ -21,7 +21,7 @@ class PGVectorVectorIOConfig(BaseModel):
|
|||
port: int | None = Field(default=5432)
|
||||
db: str | None = Field(default="postgres")
|
||||
user: str | None = Field(default="postgres")
|
||||
password: str | None = Field(default="mysecretpassword")
|
||||
password: SecretStr | None = Field(default="mysecretpassword")
|
||||
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -366,7 +366,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
port=self.config.port,
|
||||
database=self.config.db,
|
||||
user=self.config.user,
|
||||
password=self.config.password,
|
||||
password=self.config.password.get_secret_value(),
|
||||
)
|
||||
self.conn.autocommit = True
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
|
|
|
@ -50,8 +50,8 @@ def create_bedrock_client(config: BedrockBaseConfig, service_name: str = "bedroc
|
|||
|
||||
session_args = {
|
||||
"aws_access_key_id": config.aws_access_key_id,
|
||||
"aws_secret_access_key": config.aws_secret_access_key,
|
||||
"aws_session_token": config.aws_session_token,
|
||||
"aws_secret_access_key": config.aws_secret_access_key.get_secret_value(),
|
||||
"aws_session_token": config.aws_session_token.get_secret_value(),
|
||||
"region_name": config.region_name,
|
||||
"profile_name": config.profile_name,
|
||||
"session_ttl": config.session_ttl,
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import os
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
|
||||
class BedrockBaseConfig(BaseModel):
|
||||
|
@ -14,12 +14,12 @@ class BedrockBaseConfig(BaseModel):
|
|||
default_factory=lambda: os.getenv("AWS_ACCESS_KEY_ID"),
|
||||
description="The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID",
|
||||
)
|
||||
aws_secret_access_key: str | None = Field(
|
||||
default_factory=lambda: os.getenv("AWS_SECRET_ACCESS_KEY"),
|
||||
aws_secret_access_key: SecretStr | None = Field(
|
||||
default_factory=lambda: SecretStr(val) if (val := os.getenv("AWS_SECRET_ACCESS_KEY")) else None,
|
||||
description="The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY",
|
||||
)
|
||||
aws_session_token: str | None = Field(
|
||||
default_factory=lambda: os.getenv("AWS_SESSION_TOKEN"),
|
||||
aws_session_token: SecretStr | None = Field(
|
||||
default_factory=lambda: SecretStr(val) if (val := os.getenv("AWS_SESSION_TOKEN")) else None,
|
||||
description="The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN",
|
||||
)
|
||||
region_name: str | None = Field(
|
||||
|
|
|
@ -8,6 +8,7 @@ from collections.abc import AsyncGenerator, AsyncIterator
|
|||
from typing import Any
|
||||
|
||||
import litellm
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -68,7 +69,7 @@ class LiteLLMOpenAIMixin(
|
|||
def __init__(
|
||||
self,
|
||||
litellm_provider_name: str,
|
||||
api_key_from_config: str | None,
|
||||
api_key_from_config: SecretStr | None,
|
||||
provider_data_api_key_field: str,
|
||||
model_entries: list[ProviderModelEntry] | None = None,
|
||||
openai_compat_api_base: str | None = None,
|
||||
|
@ -247,14 +248,14 @@ class LiteLLMOpenAIMixin(
|
|||
|
||||
return {
|
||||
"model": request.model,
|
||||
"api_key": self.get_api_key(),
|
||||
"api_key": self.get_api_key().get_secret_value(),
|
||||
"api_base": self.api_base,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
def get_api_key(self) -> SecretStr:
|
||||
provider_data = self.get_request_provider_data()
|
||||
key_field = self.provider_data_api_key_field
|
||||
if provider_data and getattr(provider_data, key_field, None):
|
||||
|
@ -305,7 +306,7 @@ class LiteLLMOpenAIMixin(
|
|||
response = litellm.embedding(
|
||||
model=self.get_litellm_model_name(model_obj.provider_resource_id),
|
||||
input=input_list,
|
||||
api_key=self.get_api_key(),
|
||||
api_key=self.get_api_key().get_secret_value(),
|
||||
api_base=self.api_base,
|
||||
dimensions=dimensions,
|
||||
)
|
||||
|
@ -368,7 +369,7 @@ class LiteLLMOpenAIMixin(
|
|||
user=user,
|
||||
guided_choice=guided_choice,
|
||||
prompt_logprobs=prompt_logprobs,
|
||||
api_key=self.get_api_key(),
|
||||
api_key=self.get_api_key().get_secret_value(),
|
||||
api_base=self.api_base,
|
||||
)
|
||||
return await litellm.atext_completion(**params)
|
||||
|
@ -424,7 +425,7 @@ class LiteLLMOpenAIMixin(
|
|||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
api_key=self.get_api_key(),
|
||||
api_key=self.get_api_key().get_secret_value(),
|
||||
api_base=self.api_base,
|
||||
)
|
||||
return await litellm.acompletion(**params)
|
||||
|
|
|
@ -11,6 +11,7 @@ from collections.abc import AsyncIterator
|
|||
from typing import Any
|
||||
|
||||
from openai import NOT_GIVEN, AsyncOpenAI
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
Model,
|
||||
|
@ -70,14 +71,14 @@ class OpenAIMixin(ModelRegistryHelper, ABC):
|
|||
allowed_models: list[str] = []
|
||||
|
||||
@abstractmethod
|
||||
def get_api_key(self) -> str:
|
||||
def get_api_key(self) -> SecretStr:
|
||||
"""
|
||||
Get the API key.
|
||||
|
||||
This method must be implemented by child classes to provide the API key
|
||||
for authenticating with the OpenAI API or compatible endpoints.
|
||||
|
||||
:return: The API key as a string
|
||||
:return: The API key as a SecretStr
|
||||
"""
|
||||
pass
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ import re
|
|||
from enum import Enum
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, Field, SecretStr, field_validator
|
||||
|
||||
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
|
||||
|
@ -74,7 +74,7 @@ class PostgresKVStoreConfig(CommonConfig):
|
|||
port: int = 5432
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: str | None = None
|
||||
password: SecretStr | None = None
|
||||
ssl_mode: str | None = None
|
||||
ca_cert_path: str | None = None
|
||||
table_name: str = "llamastack_kvstore"
|
||||
|
@ -118,7 +118,7 @@ class MongoDBKVStoreConfig(CommonConfig):
|
|||
port: int = 27017
|
||||
db: str = "llamastack"
|
||||
user: str | None = None
|
||||
password: str | None = None
|
||||
password: SecretStr | None = None
|
||||
collection_name: str = "llamastack_kvstore"
|
||||
|
||||
@classmethod
|
||||
|
|
|
@ -34,7 +34,7 @@ class MongoDBKVStoreImpl(KVStore):
|
|||
"host": self.config.host,
|
||||
"port": self.config.port,
|
||||
"username": self.config.user,
|
||||
"password": self.config.password,
|
||||
"password": self.config.password.get_secret_value(),
|
||||
}
|
||||
conn_creds = {k: v for k, v in conn_creds.items() if v is not None}
|
||||
self.conn = AsyncMongoClient(**conn_creds)
|
||||
|
|
|
@ -30,7 +30,7 @@ class PostgresKVStoreImpl(KVStore):
|
|||
port=self.config.port,
|
||||
database=self.config.db,
|
||||
user=self.config.user,
|
||||
password=self.config.password,
|
||||
password=self.config.password.get_secret_value(),
|
||||
sslmode=self.config.ssl_mode,
|
||||
sslrootcert=self.config.ca_cert_path,
|
||||
)
|
||||
|
|
|
@ -9,7 +9,7 @@ from enum import StrEnum
|
|||
from pathlib import Path
|
||||
from typing import Annotated, Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
|
||||
|
@ -63,11 +63,11 @@ class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
|
|||
port: int = 5432
|
||||
db: str = "llamastack"
|
||||
user: str
|
||||
password: str | None = None
|
||||
password: SecretStr | None = None
|
||||
|
||||
@property
|
||||
def engine_str(self) -> str:
|
||||
return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}"
|
||||
return f"postgresql+asyncpg://{self.user}:{self.password.get_secret_value() if self.password else ''}@{self.host}:{self.port}/{self.db}"
|
||||
|
||||
@classmethod
|
||||
def pip_packages(cls) -> list[str]:
|
||||
|
|
|
@ -33,7 +33,7 @@ def test_groq_provider_openai_client_caching():
|
|||
with request_provider_data_context(
|
||||
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
|
||||
):
|
||||
assert inference_adapter.client.api_key == api_key
|
||||
assert inference_adapter.client.api_key.get_secret_value() == api_key
|
||||
|
||||
|
||||
def test_openai_provider_openai_client_caching():
|
||||
|
@ -52,7 +52,7 @@ def test_openai_provider_openai_client_caching():
|
|||
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
|
||||
):
|
||||
openai_client = inference_adapter.client
|
||||
assert openai_client.api_key == api_key
|
||||
assert openai_client.api_key.get_secret_value() == api_key
|
||||
|
||||
|
||||
def test_together_provider_openai_client_caching():
|
||||
|
@ -86,4 +86,4 @@ def test_llama_compat_provider_openai_client_caching():
|
|||
|
||||
for api_key in ["test1", "test2"]:
|
||||
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"llama_api_key": api_key})}):
|
||||
assert inference_adapter.client.api_key == api_key
|
||||
assert inference_adapter.client.api_key.get_secret_value() == api_key
|
||||
|
|
|
@ -8,7 +8,7 @@ import json
|
|||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from llama_stack.core.request_headers import request_provider_data_context
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
@ -16,11 +16,11 @@ from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOp
|
|||
|
||||
# Test fixtures and helper classes
|
||||
class TestConfig(BaseModel):
|
||||
api_key: str | None = Field(default=None)
|
||||
api_key: SecretStr | None = Field(default=None)
|
||||
|
||||
|
||||
class TestProviderDataValidator(BaseModel):
|
||||
test_api_key: str | None = Field(default=None)
|
||||
test_api_key: SecretStr | None = Field(default=None)
|
||||
|
||||
|
||||
class TestLiteLLMAdapter(LiteLLMOpenAIMixin):
|
||||
|
@ -36,7 +36,7 @@ class TestLiteLLMAdapter(LiteLLMOpenAIMixin):
|
|||
@pytest.fixture
|
||||
def adapter_with_config_key():
|
||||
"""Fixture to create adapter with API key in config"""
|
||||
config = TestConfig(api_key="config-api-key")
|
||||
config = TestConfig(api_key=SecretStr("config-api-key"))
|
||||
adapter = TestLiteLLMAdapter(config)
|
||||
adapter.__provider_spec__ = MagicMock()
|
||||
adapter.__provider_spec__.provider_data_validator = (
|
||||
|
@ -59,7 +59,7 @@ def adapter_without_config_key():
|
|||
|
||||
def test_api_key_from_config_when_no_provider_data(adapter_with_config_key):
|
||||
"""Test that adapter uses config API key when no provider data is available"""
|
||||
api_key = adapter_with_config_key.get_api_key()
|
||||
api_key = adapter_with_config_key.get_api_key().get_secret_value()
|
||||
assert api_key == "config-api-key"
|
||||
|
||||
|
||||
|
@ -68,28 +68,28 @@ def test_provider_data_takes_priority_over_config(adapter_with_config_key):
|
|||
with request_provider_data_context(
|
||||
{"x-llamastack-provider-data": json.dumps({"test_api_key": "provider-data-key"})}
|
||||
):
|
||||
api_key = adapter_with_config_key.get_api_key()
|
||||
api_key = adapter_with_config_key.get_api_key().get_secret_value()
|
||||
assert api_key == "provider-data-key"
|
||||
|
||||
|
||||
def test_fallback_to_config_when_provider_data_missing_key(adapter_with_config_key):
|
||||
"""Test fallback to config when provider data doesn't have the required key"""
|
||||
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"wrong_key": "some-value"})}):
|
||||
api_key = adapter_with_config_key.get_api_key()
|
||||
api_key = adapter_with_config_key.get_api_key().get_secret_value()
|
||||
assert api_key == "config-api-key"
|
||||
|
||||
|
||||
def test_error_when_no_api_key_available(adapter_without_config_key):
|
||||
"""Test that ValueError is raised when neither config nor provider data have API key"""
|
||||
with pytest.raises(ValueError, match="API key is not set"):
|
||||
adapter_without_config_key.get_api_key()
|
||||
adapter_without_config_key.get_api_key().get_secret_value()
|
||||
|
||||
|
||||
def test_error_when_provider_data_has_wrong_key(adapter_without_config_key):
|
||||
"""Test that ValueError is raised when provider data exists but doesn't have required key"""
|
||||
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"wrong_key": "some-value"})}):
|
||||
with pytest.raises(ValueError, match="API key is not set"):
|
||||
adapter_without_config_key.get_api_key()
|
||||
adapter_without_config_key.get_api_key().get_secret_value()
|
||||
|
||||
|
||||
def test_provider_data_works_when_config_is_none(adapter_without_config_key):
|
||||
|
@ -97,14 +97,14 @@ def test_provider_data_works_when_config_is_none(adapter_without_config_key):
|
|||
with request_provider_data_context(
|
||||
{"x-llamastack-provider-data": json.dumps({"test_api_key": "provider-only-key"})}
|
||||
):
|
||||
api_key = adapter_without_config_key.get_api_key()
|
||||
api_key = adapter_without_config_key.get_api_key().get_secret_value()
|
||||
assert api_key == "provider-only-key"
|
||||
|
||||
|
||||
def test_error_message_includes_correct_field_names(adapter_without_config_key):
|
||||
"""Test that error message includes correct field name and header information"""
|
||||
try:
|
||||
adapter_without_config_key.get_api_key()
|
||||
adapter_without_config_key.get_api_key().get_secret_value()
|
||||
raise AssertionError("Should have raised ValueError")
|
||||
except ValueError as e:
|
||||
assert "test_api_key" in str(e) # Should mention the correct field name
|
||||
|
|
|
@ -7,6 +7,8 @@
|
|||
import os
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.core.stack import replace_env_vars
|
||||
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
||||
from llama_stack.providers.remote.inference.openai.openai import OpenAIInferenceAdapter
|
||||
|
@ -59,14 +61,14 @@ class TestOpenAIBaseURLConfig:
|
|||
adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
# Mock the get_api_key method since it's delegated to LiteLLMOpenAIMixin
|
||||
adapter.get_api_key = MagicMock(return_value="test-key")
|
||||
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
|
||||
|
||||
# Access the client property to trigger AsyncOpenAI initialization
|
||||
_ = adapter.client
|
||||
|
||||
# Verify AsyncOpenAI was called with the correct base_url
|
||||
mock_openai_class.assert_called_once_with(
|
||||
api_key="test-key",
|
||||
api_key=SecretStr("test-key"),
|
||||
base_url=custom_url,
|
||||
)
|
||||
|
||||
|
@ -78,7 +80,7 @@ class TestOpenAIBaseURLConfig:
|
|||
adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
# Mock the get_api_key method
|
||||
adapter.get_api_key = MagicMock(return_value="test-key")
|
||||
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
|
||||
|
||||
# Mock a model object that will be returned by models.list()
|
||||
mock_model = MagicMock()
|
||||
|
@ -101,7 +103,7 @@ class TestOpenAIBaseURLConfig:
|
|||
|
||||
# Verify the client was created with the custom URL
|
||||
mock_openai_class.assert_called_with(
|
||||
api_key="test-key",
|
||||
api_key=SecretStr("test-key"),
|
||||
base_url=custom_url,
|
||||
)
|
||||
|
||||
|
@ -119,7 +121,7 @@ class TestOpenAIBaseURLConfig:
|
|||
adapter = OpenAIInferenceAdapter(config)
|
||||
|
||||
# Mock the get_api_key method
|
||||
adapter.get_api_key = MagicMock(return_value="test-key")
|
||||
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
|
||||
|
||||
# Mock a model object that will be returned by models.list()
|
||||
mock_model = MagicMock()
|
||||
|
@ -142,6 +144,6 @@ class TestOpenAIBaseURLConfig:
|
|||
|
||||
# Verify the client was created with the environment variable URL
|
||||
mock_openai_class.assert_called_with(
|
||||
api_key="test-key",
|
||||
api_key=SecretStr("test-key"),
|
||||
base_url="https://proxy.openai.com/v1",
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue