fix: prevent telemetry from leaking sensitive info

Prevent sensitive information from being logged in telemetry output by
assigning SecretStr type to sensitive fields. API keys, password from
KV store are now covered. All providers have been converted.

Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
Sébastien Han 2025-08-08 15:54:45 +02:00
parent 8dc9fd6844
commit c4cb6aa8d9
No known key found for this signature in database
53 changed files with 121 additions and 109 deletions

View file

@ -17,7 +17,7 @@ AWS S3-based file storage provider for scalable cloud file management with metad
| `bucket_name` | `<class 'str'>` | No | | S3 bucket name to store files |
| `region` | `<class 'str'>` | No | us-east-1 | AWS region where the bucket is located |
| `aws_access_key_id` | `str \| None` | No | | AWS access key ID (optional if using IAM roles) |
| `aws_secret_access_key` | `str \| None` | No | | AWS secret access key (optional if using IAM roles) |
| `aws_secret_access_key` | `pydantic.types.SecretStr \| None` | No | | AWS secret access key (optional if using IAM roles) |
| `endpoint_url` | `str \| None` | No | | Custom S3 endpoint URL (for MinIO, LocalStack, etc.) |
| `auto_create_bucket` | `<class 'bool'>` | No | False | Automatically create the S3 bucket if it doesn't exist |
| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata |

View file

@ -14,7 +14,7 @@ Anthropic inference provider for accessing Claude models and Anthropic's AI serv
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | API key for Anthropic models |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | API key for Anthropic models |
## Sample Configuration

View file

@ -15,8 +15,8 @@ AWS Bedrock inference provider for accessing various AI models through AWS's man
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
| `aws_secret_access_key` | `str \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
| `aws_session_token` | `str \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
| `aws_secret_access_key` | `pydantic.types.SecretStr \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
| `aws_session_token` | `pydantic.types.SecretStr \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
| `region_name` | `str \| None` | No | | The default AWS Region to use, for example, us-west-1 or us-west-2.Default use environment variable: AWS_DEFAULT_REGION |
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |

View file

@ -14,7 +14,7 @@ Google Gemini inference provider for accessing Gemini models and Google's AI ser
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | API key for Gemini models |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | API key for Gemini models |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Groq inference provider for ultra-fast inference using Groq's LPU technology.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Groq API key |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Groq API key |
| `url` | `<class 'str'>` | No | https://api.groq.com | The URL for the Groq AI server |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Llama OpenAI-compatible provider for using Llama models with OpenAI API format.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Llama API key |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Llama API key |
| `openai_compat_api_base` | `<class 'str'>` | No | https://api.llama.com/compat/v1/ | The URL for the Llama API server |
## Sample Configuration

View file

@ -14,7 +14,7 @@ OpenAI inference provider for accessing GPT models and other OpenAI services.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | API key for OpenAI models |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | API key for OpenAI models |
| `base_url` | `<class 'str'>` | No | https://api.openai.com/v1 | Base URL for OpenAI API |
## Sample Configuration

View file

@ -15,7 +15,7 @@ RunPod inference provider for running models on RunPod's cloud GPU platform.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `str \| None` | No | | The URL for the Runpod model serving endpoint |
| `api_token` | `str \| None` | No | | The API token |
| `api_token` | `pydantic.types.SecretStr \| None` | No | | The API token |
## Sample Configuration

View file

@ -16,7 +16,7 @@ Remote vLLM inference provider for connecting to vLLM servers.
|-------|------|----------|---------|-------------|
| `url` | `str \| None` | No | | The URL for the vLLM model serving endpoint |
| `max_tokens` | `<class 'int'>` | No | 4096 | Maximum number of tokens to generate. |
| `api_token` | `str \| None` | No | fake | The API token |
| `api_token` | `pydantic.types.SecretStr \| None` | No | ********** | The API token |
| `tls_verify` | `bool \| str` | No | True | Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically |

View file

@ -15,8 +15,8 @@ AWS Bedrock safety provider for content moderation using AWS's safety services.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `aws_access_key_id` | `str \| None` | No | | The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID |
| `aws_secret_access_key` | `str \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
| `aws_session_token` | `str \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
| `aws_secret_access_key` | `pydantic.types.SecretStr \| None` | No | | The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY |
| `aws_session_token` | `pydantic.types.SecretStr \| None` | No | | The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN |
| `region_name` | `str \| None` | No | | The default AWS Region to use, for example, us-west-1 or us-west-2.Default use environment variable: AWS_DEFAULT_REGION |
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |

View file

@ -14,7 +14,7 @@ Braintrust scoring provider for evaluation and scoring using the Braintrust plat
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `openai_api_key` | `str \| None` | No | | The OpenAI API Key |
| `openai_api_key` | `pydantic.types.SecretStr \| None` | No | | The OpenAI API Key |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Bing Search tool for web search capabilities using Microsoft's search engine.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | |
| `top_k` | `<class 'int'>` | No | 3 | |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Brave Search tool for web search capabilities with privacy-focused results.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Brave Search API Key |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Brave Search API Key |
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
## Sample Configuration

View file

@ -14,7 +14,7 @@ Tavily Search tool for AI-optimized web search with structured results.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `api_key` | `str \| None` | No | | The Tavily Search API Key |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Tavily Search API Key |
| `max_results` | `<class 'int'>` | No | 3 | The maximum number of results to return |
## Sample Configuration

View file

@ -217,7 +217,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de
| `port` | `int \| None` | No | 5432 | |
| `db` | `str \| None` | No | postgres | |
| `user` | `str \| None` | No | postgres | |
| `password` | `str \| None` | No | mysecretpassword | |
| `password` | `pydantic.types.SecretStr \| None` | No | mysecretpassword | |
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) |
## Sample Configuration

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel
from pydantic import BaseModel, SecretStr
from llama_stack.core.datatypes import Api
@ -13,7 +13,7 @@ from .config import BraintrustScoringConfig
class BraintrustProviderDataValidator(BaseModel):
openai_api_key: str
openai_api_key: SecretStr
async def get_provider_impl(

View file

@ -17,7 +17,7 @@ from autoevals.ragas import (
ContextRelevancy,
Faithfulness,
)
from pydantic import BaseModel
from pydantic import BaseModel, SecretStr
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
@ -152,9 +152,9 @@ class BraintrustScoringImpl(
raise ValueError(
'Pass OpenAI API Key in the header X-LlamaStack-Provider-Data as { "openai_api_key": <your api key>}'
)
self.config.openai_api_key = provider_data.openai_api_key
self.config.openai_api_key = SecretStr(provider_data.openai_api_key)
os.environ["OPENAI_API_KEY"] = self.config.openai_api_key
os.environ["OPENAI_API_KEY"] = self.config.openai_api_key.get_secret_value()
async def score_batch(
self,

View file

@ -5,11 +5,11 @@
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
class BraintrustScoringConfig(BaseModel):
openai_api_key: str | None = Field(
openai_api_key: SecretStr | None = Field(
default=None,
description="The OpenAI API Key",
)

View file

@ -64,7 +64,9 @@ class ConsoleSpanProcessor(SpanProcessor):
for key, value in event.attributes.items():
if key.startswith("__") or key in ["message", "severity"]:
continue
logger.info(f"[dim]{key}[/dim]: {value}")
str_value = str(value)
logger.info(f"[dim]{key}[/dim]: {str_value}")
def shutdown(self) -> None:
"""Shutdown the processor."""

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig
@ -17,7 +17,7 @@ class S3FilesImplConfig(BaseModel):
bucket_name: str = Field(description="S3 bucket name to store files")
region: str = Field(default="us-east-1", description="AWS region where the bucket is located")
aws_access_key_id: str | None = Field(default=None, description="AWS access key ID (optional if using IAM roles)")
aws_secret_access_key: str | None = Field(
aws_secret_access_key: SecretStr | None = Field(
default=None, description="AWS secret access key (optional if using IAM roles)"
)
endpoint_url: str | None = Field(default=None, description="Custom S3 endpoint URL (for MinIO, LocalStack, etc.)")

View file

@ -46,7 +46,7 @@ def _create_s3_client(config: S3FilesImplConfig) -> boto3.client:
s3_config.update(
{
"aws_access_key_id": config.aws_access_key_id,
"aws_secret_access_key": config.aws_secret_access_key,
"aws_secret_access_key": config.aws_secret_access_key.get_secret_value(),
}
)

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -27,7 +28,7 @@ class AnthropicInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
LiteLLMOpenAIMixin.__init__(
self,
litellm_provider_name="anthropic",
api_key_from_config=config.api_key,
api_key_from_config=config.api_key.get_secret_value() if config.api_key else None,
provider_data_api_key_field="anthropic_api_key",
)
self.config = config

View file

@ -6,13 +6,13 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
class AnthropicProviderDataValidator(BaseModel):
anthropic_api_key: str | None = Field(
anthropic_api_key: SecretStr | None = Field(
default=None,
description="API key for Anthropic models",
)
@ -20,7 +20,7 @@ class AnthropicProviderDataValidator(BaseModel):
@json_schema_type
class AnthropicConfig(BaseModel):
api_key: str | None = Field(
api_key: SecretStr | None = Field(
default=None,
description="API key for Anthropic models",
)

View file

@ -6,13 +6,13 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
class GeminiProviderDataValidator(BaseModel):
gemini_api_key: str | None = Field(
gemini_api_key: SecretStr | None = Field(
default=None,
description="API key for Gemini models",
)
@ -20,7 +20,7 @@ class GeminiProviderDataValidator(BaseModel):
@json_schema_type
class GeminiConfig(BaseModel):
api_key: str | None = Field(
api_key: SecretStr | None = Field(
default=None,
description="API key for Gemini models",
)

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -19,7 +20,7 @@ class GeminiInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
LiteLLMOpenAIMixin.__init__(
self,
litellm_provider_name="gemini",
api_key_from_config=config.api_key,
api_key_from_config=config.api_key.get_secret_value() if config.api_key else None,
provider_data_api_key_field="gemini_api_key",
)
self.config = config

View file

@ -6,13 +6,13 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
class GroqProviderDataValidator(BaseModel):
groq_api_key: str | None = Field(
groq_api_key: SecretStr | None = Field(
default=None,
description="API key for Groq models",
)
@ -20,7 +20,7 @@ class GroqProviderDataValidator(BaseModel):
@json_schema_type
class GroqConfig(BaseModel):
api_key: str | None = Field(
api_key: SecretStr | None = Field(
# The Groq client library loads the GROQ_API_KEY environment variable by default
default=None,
description="The Groq API key",

View file

@ -6,13 +6,13 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
class LlamaProviderDataValidator(BaseModel):
llama_api_key: str | None = Field(
llama_api_key: SecretStr | None = Field(
default=None,
description="API key for api.llama models",
)
@ -20,7 +20,7 @@ class LlamaProviderDataValidator(BaseModel):
@json_schema_type
class LlamaCompatConfig(BaseModel):
api_key: str | None = Field(
api_key: SecretStr | None = Field(
default=None,
description="The Llama API key",
)

View file

@ -6,13 +6,13 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
class OpenAIProviderDataValidator(BaseModel):
openai_api_key: str | None = Field(
openai_api_key: SecretStr | None = Field(
default=None,
description="API key for OpenAI models",
)
@ -20,7 +20,7 @@ class OpenAIProviderDataValidator(BaseModel):
@json_schema_type
class OpenAIConfig(BaseModel):
api_key: str | None = Field(
api_key: SecretStr | None = Field(
default=None,
description="API key for OpenAI models",
)

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
@ -17,7 +17,7 @@ class RunpodImplConfig(BaseModel):
default=None,
description="The URL for the Runpod model serving endpoint",
)
api_token: str | None = Field(
api_token: SecretStr | None = Field(
default=None,
description="The API token",
)

View file

@ -103,7 +103,10 @@ class RunpodInferenceAdapter(
tool_config=tool_config,
)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
client = OpenAI(
base_url=self.config.url,
api_key=self.config.api_token.get_secret_value() if self.config.api_token else None,
)
if stream:
return self._stream_chat_completion(request, client)
else:

View file

@ -8,6 +8,7 @@ from typing import Any
import google.auth.transport.requests
from google.auth import default
from pydantic import SecretStr
from llama_stack.apis.inference import ChatCompletionRequest
from llama_stack.providers.utils.inference.litellm_openai_mixin import (
@ -43,7 +44,7 @@ class VertexAIInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
except Exception:
# If we can't get credentials, return empty string to let LiteLLM handle it
# This allows the LiteLLM mixin to work with ADC directly
return ""
return SecretStr("")
def get_base_url(self) -> str:
"""

View file

@ -6,7 +6,7 @@
from pathlib import Path
from pydantic import BaseModel, Field, field_validator
from pydantic import BaseModel, Field, SecretStr, field_validator
from llama_stack.schema_utils import json_schema_type
@ -21,8 +21,8 @@ class VLLMInferenceAdapterConfig(BaseModel):
default=4096,
description="Maximum number of tokens to generate.",
)
api_token: str | None = Field(
default="fake",
api_token: SecretStr | None = Field(
default=SecretStr("fake"),
description="The API token",
)
tls_verify: bool | str = Field(

View file

@ -294,7 +294,7 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
self,
model_entries=build_hf_repo_model_entries(),
litellm_provider_name="vllm",
api_key_from_config=config.api_token,
api_key_from_config=config.api_token.get_secret_value(),
provider_data_api_key_field="vllm_api_token",
openai_compat_api_base=config.url,
)

View file

@ -40,7 +40,7 @@ class BingSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsReq
def _get_api_key(self) -> str:
if self.config.api_key:
return self.config.api_key
return self.config.api_key.get_secret_value()
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.bing_search_api_key:

View file

@ -6,13 +6,13 @@
from typing import Any
from pydantic import BaseModel
from pydantic import BaseModel, SecretStr
class BingSearchToolConfig(BaseModel):
"""Configuration for Bing Search Tool Runtime"""
api_key: str | None = None
api_key: SecretStr | None = None
top_k: int = 3
@classmethod

View file

@ -39,7 +39,7 @@ class BraveSearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsRe
def _get_api_key(self) -> str:
if self.config.api_key:
return self.config.api_key
return self.config.api_key.get_secret_value()
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.brave_search_api_key:

View file

@ -6,11 +6,11 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
class BraveSearchToolConfig(BaseModel):
api_key: str | None = Field(
api_key: SecretStr | None = Field(
default=None,
description="The Brave Search API Key",
)

View file

@ -6,11 +6,11 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
class TavilySearchToolConfig(BaseModel):
api_key: str | None = Field(
api_key: SecretStr | None = Field(
default=None,
description="The Tavily Search API Key",
)

View file

@ -39,7 +39,7 @@ class TavilySearchToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsR
def _get_api_key(self) -> str:
if self.config.api_key:
return self.config.api_key
return self.config.api_key.get_secret_value()
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.tavily_search_api_key:

View file

@ -40,7 +40,7 @@ class WolframAlphaToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, NeedsR
def _get_api_key(self) -> str:
if self.config.api_key:
return self.config.api_key
return self.config.api_key.get_secret_value()
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.wolfram_alpha_api_key:

View file

@ -6,7 +6,7 @@
from typing import Any
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.providers.utils.kvstore.config import (
KVStoreConfig,
@ -21,7 +21,7 @@ class PGVectorVectorIOConfig(BaseModel):
port: int | None = Field(default=5432)
db: str | None = Field(default="postgres")
user: str | None = Field(default="postgres")
password: str | None = Field(default="mysecretpassword")
password: SecretStr | None = Field(default="mysecretpassword")
kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None)
@classmethod

View file

@ -366,7 +366,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
port=self.config.port,
database=self.config.db,
user=self.config.user,
password=self.config.password,
password=self.config.password.get_secret_value(),
)
self.conn.autocommit = True
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:

View file

@ -50,8 +50,8 @@ def create_bedrock_client(config: BedrockBaseConfig, service_name: str = "bedroc
session_args = {
"aws_access_key_id": config.aws_access_key_id,
"aws_secret_access_key": config.aws_secret_access_key,
"aws_session_token": config.aws_session_token,
"aws_secret_access_key": config.aws_secret_access_key.get_secret_value(),
"aws_session_token": config.aws_session_token.get_secret_value(),
"region_name": config.region_name,
"profile_name": config.profile_name,
"session_ttl": config.session_ttl,

View file

@ -6,7 +6,7 @@
import os
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
class BedrockBaseConfig(BaseModel):
@ -14,12 +14,12 @@ class BedrockBaseConfig(BaseModel):
default_factory=lambda: os.getenv("AWS_ACCESS_KEY_ID"),
description="The AWS access key to use. Default use environment variable: AWS_ACCESS_KEY_ID",
)
aws_secret_access_key: str | None = Field(
default_factory=lambda: os.getenv("AWS_SECRET_ACCESS_KEY"),
aws_secret_access_key: SecretStr | None = Field(
default_factory=lambda: SecretStr(val) if (val := os.getenv("AWS_SECRET_ACCESS_KEY")) else None,
description="The AWS secret access key to use. Default use environment variable: AWS_SECRET_ACCESS_KEY",
)
aws_session_token: str | None = Field(
default_factory=lambda: os.getenv("AWS_SESSION_TOKEN"),
aws_session_token: SecretStr | None = Field(
default_factory=lambda: SecretStr(val) if (val := os.getenv("AWS_SESSION_TOKEN")) else None,
description="The AWS session token to use. Default use environment variable: AWS_SESSION_TOKEN",
)
region_name: str | None = Field(

View file

@ -8,6 +8,7 @@ from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
import litellm
from pydantic import SecretStr
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -68,7 +69,7 @@ class LiteLLMOpenAIMixin(
def __init__(
self,
litellm_provider_name: str,
api_key_from_config: str | None,
api_key_from_config: SecretStr | None,
provider_data_api_key_field: str,
model_entries: list[ProviderModelEntry] | None = None,
openai_compat_api_base: str | None = None,
@ -247,14 +248,14 @@ class LiteLLMOpenAIMixin(
return {
"model": request.model,
"api_key": self.get_api_key(),
"api_key": self.get_api_key().get_secret_value(),
"api_base": self.api_base,
**input_dict,
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
def get_api_key(self) -> str:
def get_api_key(self) -> SecretStr:
provider_data = self.get_request_provider_data()
key_field = self.provider_data_api_key_field
if provider_data and getattr(provider_data, key_field, None):
@ -305,7 +306,7 @@ class LiteLLMOpenAIMixin(
response = litellm.embedding(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
input=input_list,
api_key=self.get_api_key(),
api_key=self.get_api_key().get_secret_value(),
api_base=self.api_base,
dimensions=dimensions,
)
@ -368,7 +369,7 @@ class LiteLLMOpenAIMixin(
user=user,
guided_choice=guided_choice,
prompt_logprobs=prompt_logprobs,
api_key=self.get_api_key(),
api_key=self.get_api_key().get_secret_value(),
api_base=self.api_base,
)
return await litellm.atext_completion(**params)
@ -424,7 +425,7 @@ class LiteLLMOpenAIMixin(
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
api_key=self.get_api_key(),
api_key=self.get_api_key().get_secret_value(),
api_base=self.api_base,
)
return await litellm.acompletion(**params)

View file

@ -11,6 +11,7 @@ from collections.abc import AsyncIterator
from typing import Any
from openai import NOT_GIVEN, AsyncOpenAI
from pydantic import SecretStr
from llama_stack.apis.inference import (
Model,
@ -70,14 +71,14 @@ class OpenAIMixin(ModelRegistryHelper, ABC):
allowed_models: list[str] = []
@abstractmethod
def get_api_key(self) -> str:
def get_api_key(self) -> SecretStr:
"""
Get the API key.
This method must be implemented by child classes to provide the API key
for authenticating with the OpenAI API or compatible endpoints.
:return: The API key as a string
:return: The API key as a SecretStr
"""
pass

View file

@ -8,7 +8,7 @@ import re
from enum import Enum
from typing import Annotated, Literal
from pydantic import BaseModel, Field, field_validator
from pydantic import BaseModel, Field, SecretStr, field_validator
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
@ -74,7 +74,7 @@ class PostgresKVStoreConfig(CommonConfig):
port: int = 5432
db: str = "llamastack"
user: str
password: str | None = None
password: SecretStr | None = None
ssl_mode: str | None = None
ca_cert_path: str | None = None
table_name: str = "llamastack_kvstore"
@ -118,7 +118,7 @@ class MongoDBKVStoreConfig(CommonConfig):
port: int = 27017
db: str = "llamastack"
user: str | None = None
password: str | None = None
password: SecretStr | None = None
collection_name: str = "llamastack_kvstore"
@classmethod

View file

@ -34,7 +34,7 @@ class MongoDBKVStoreImpl(KVStore):
"host": self.config.host,
"port": self.config.port,
"username": self.config.user,
"password": self.config.password,
"password": self.config.password.get_secret_value(),
}
conn_creds = {k: v for k, v in conn_creds.items() if v is not None}
self.conn = AsyncMongoClient(**conn_creds)

View file

@ -30,7 +30,7 @@ class PostgresKVStoreImpl(KVStore):
port=self.config.port,
database=self.config.db,
user=self.config.user,
password=self.config.password,
password=self.config.password.get_secret_value(),
sslmode=self.config.ssl_mode,
sslrootcert=self.config.ca_cert_path,
)

View file

@ -9,7 +9,7 @@ from enum import StrEnum
from pathlib import Path
from typing import Annotated, Literal
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR
@ -63,11 +63,11 @@ class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig):
port: int = 5432
db: str = "llamastack"
user: str
password: str | None = None
password: SecretStr | None = None
@property
def engine_str(self) -> str:
return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}"
return f"postgresql+asyncpg://{self.user}:{self.password.get_secret_value() if self.password else ''}@{self.host}:{self.port}/{self.db}"
@classmethod
def pip_packages(cls) -> list[str]:

View file

@ -33,7 +33,7 @@ def test_groq_provider_openai_client_caching():
with request_provider_data_context(
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
):
assert inference_adapter.client.api_key == api_key
assert inference_adapter.client.api_key.get_secret_value() == api_key
def test_openai_provider_openai_client_caching():
@ -52,7 +52,7 @@ def test_openai_provider_openai_client_caching():
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
):
openai_client = inference_adapter.client
assert openai_client.api_key == api_key
assert openai_client.api_key.get_secret_value() == api_key
def test_together_provider_openai_client_caching():
@ -86,4 +86,4 @@ def test_llama_compat_provider_openai_client_caching():
for api_key in ["test1", "test2"]:
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"llama_api_key": api_key})}):
assert inference_adapter.client.api_key == api_key
assert inference_adapter.client.api_key.get_secret_value() == api_key

View file

@ -8,7 +8,7 @@ import json
from unittest.mock import MagicMock
import pytest
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, SecretStr
from llama_stack.core.request_headers import request_provider_data_context
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
@ -16,11 +16,11 @@ from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOp
# Test fixtures and helper classes
class TestConfig(BaseModel):
api_key: str | None = Field(default=None)
api_key: SecretStr | None = Field(default=None)
class TestProviderDataValidator(BaseModel):
test_api_key: str | None = Field(default=None)
test_api_key: SecretStr | None = Field(default=None)
class TestLiteLLMAdapter(LiteLLMOpenAIMixin):
@ -36,7 +36,7 @@ class TestLiteLLMAdapter(LiteLLMOpenAIMixin):
@pytest.fixture
def adapter_with_config_key():
"""Fixture to create adapter with API key in config"""
config = TestConfig(api_key="config-api-key")
config = TestConfig(api_key=SecretStr("config-api-key"))
adapter = TestLiteLLMAdapter(config)
adapter.__provider_spec__ = MagicMock()
adapter.__provider_spec__.provider_data_validator = (
@ -59,7 +59,7 @@ def adapter_without_config_key():
def test_api_key_from_config_when_no_provider_data(adapter_with_config_key):
"""Test that adapter uses config API key when no provider data is available"""
api_key = adapter_with_config_key.get_api_key()
api_key = adapter_with_config_key.get_api_key().get_secret_value()
assert api_key == "config-api-key"
@ -68,28 +68,28 @@ def test_provider_data_takes_priority_over_config(adapter_with_config_key):
with request_provider_data_context(
{"x-llamastack-provider-data": json.dumps({"test_api_key": "provider-data-key"})}
):
api_key = adapter_with_config_key.get_api_key()
api_key = adapter_with_config_key.get_api_key().get_secret_value()
assert api_key == "provider-data-key"
def test_fallback_to_config_when_provider_data_missing_key(adapter_with_config_key):
"""Test fallback to config when provider data doesn't have the required key"""
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"wrong_key": "some-value"})}):
api_key = adapter_with_config_key.get_api_key()
api_key = adapter_with_config_key.get_api_key().get_secret_value()
assert api_key == "config-api-key"
def test_error_when_no_api_key_available(adapter_without_config_key):
"""Test that ValueError is raised when neither config nor provider data have API key"""
with pytest.raises(ValueError, match="API key is not set"):
adapter_without_config_key.get_api_key()
adapter_without_config_key.get_api_key().get_secret_value()
def test_error_when_provider_data_has_wrong_key(adapter_without_config_key):
"""Test that ValueError is raised when provider data exists but doesn't have required key"""
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"wrong_key": "some-value"})}):
with pytest.raises(ValueError, match="API key is not set"):
adapter_without_config_key.get_api_key()
adapter_without_config_key.get_api_key().get_secret_value()
def test_provider_data_works_when_config_is_none(adapter_without_config_key):
@ -97,14 +97,14 @@ def test_provider_data_works_when_config_is_none(adapter_without_config_key):
with request_provider_data_context(
{"x-llamastack-provider-data": json.dumps({"test_api_key": "provider-only-key"})}
):
api_key = adapter_without_config_key.get_api_key()
api_key = adapter_without_config_key.get_api_key().get_secret_value()
assert api_key == "provider-only-key"
def test_error_message_includes_correct_field_names(adapter_without_config_key):
"""Test that error message includes correct field name and header information"""
try:
adapter_without_config_key.get_api_key()
adapter_without_config_key.get_api_key().get_secret_value()
raise AssertionError("Should have raised ValueError")
except ValueError as e:
assert "test_api_key" in str(e) # Should mention the correct field name

View file

@ -7,6 +7,8 @@
import os
from unittest.mock import MagicMock, patch
from pydantic import SecretStr
from llama_stack.core.stack import replace_env_vars
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
from llama_stack.providers.remote.inference.openai.openai import OpenAIInferenceAdapter
@ -59,14 +61,14 @@ class TestOpenAIBaseURLConfig:
adapter = OpenAIInferenceAdapter(config)
# Mock the get_api_key method since it's delegated to LiteLLMOpenAIMixin
adapter.get_api_key = MagicMock(return_value="test-key")
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
# Access the client property to trigger AsyncOpenAI initialization
_ = adapter.client
# Verify AsyncOpenAI was called with the correct base_url
mock_openai_class.assert_called_once_with(
api_key="test-key",
api_key=SecretStr("test-key"),
base_url=custom_url,
)
@ -78,7 +80,7 @@ class TestOpenAIBaseURLConfig:
adapter = OpenAIInferenceAdapter(config)
# Mock the get_api_key method
adapter.get_api_key = MagicMock(return_value="test-key")
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
# Mock a model object that will be returned by models.list()
mock_model = MagicMock()
@ -101,7 +103,7 @@ class TestOpenAIBaseURLConfig:
# Verify the client was created with the custom URL
mock_openai_class.assert_called_with(
api_key="test-key",
api_key=SecretStr("test-key"),
base_url=custom_url,
)
@ -119,7 +121,7 @@ class TestOpenAIBaseURLConfig:
adapter = OpenAIInferenceAdapter(config)
# Mock the get_api_key method
adapter.get_api_key = MagicMock(return_value="test-key")
adapter.get_api_key = MagicMock(return_value=SecretStr("test-key"))
# Mock a model object that will be returned by models.list()
mock_model = MagicMock()
@ -142,6 +144,6 @@ class TestOpenAIBaseURLConfig:
# Verify the client was created with the environment variable URL
mock_openai_class.assert_called_with(
api_key="test-key",
api_key=SecretStr("test-key"),
base_url="https://proxy.openai.com/v1",
)