scorer registry

This commit is contained in:
Xi Yan 2024-10-14 15:41:31 -07:00
parent 9c501d042b
commit c50686b6fe
5 changed files with 55 additions and 32 deletions

View file

@ -5,9 +5,19 @@
# the root directory of this source tree. # the root directory of this source tree.
# TODO: make these import config based # TODO: make these import config based
from llama_stack.apis.evals import * # noqa: F403 from llama_stack.apis.evals import * # noqa: F403
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
from ..registry import Registry from ..registry import Registry
class ScorerRegistry(Registry[BaseScorer]): class ScorerRegistry(Registry[BaseScorer]):
_REGISTRY: Dict[str, BaseScorer] = {} _REGISTRY: Dict[str, BaseScorer] = {}
SCORER_REGISTRY = {
"accuracy": AccuracyScorer,
"random": RandomScorer,
}
for k, v in SCORER_REGISTRY.items():
ScorerRegistry.register(k, v)

View file

@ -53,6 +53,7 @@ class MetaReferenceEvalsImpl(Evals):
scoring_config=EvaluateScoringConfig( scoring_config=EvaluateScoringConfig(
scorer_config_list=[ scorer_config_list=[
EvaluateSingleScorerConfig(scorer_name="accuracy"), EvaluateSingleScorerConfig(scorer_name="accuracy"),
EvaluateSingleScorerConfig(scorer_name="random"),
] ]
), ),
) )

View file

@ -0,0 +1,35 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.evals.evals import BaseScorer, EvalResult, SingleEvalResult
from llama_stack.apis.datasets.datasets import * # noqa: F401 F403
class AggregateScorer(BaseScorer[ScorerInputSample]):
def __init__(self, scorers: List[BaseScorer[ScorerInputSample]]):
self.scorers = scorers
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
all_score_data = {}
for scorer in self.scorers:
score_data = scorer.score_sample(scorer_input_sample).score_data
for k, v in score_data.items():
all_score_data[k] = v
return SingleEvalResult(
score_data=all_score_data,
)
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
all_metrics = {}
for scorer in self.scorers:
metrics = scorer.aggregate_results(eval_results).metrics
for k, v in metrics.items():
all_metrics[f"{scorer.__class__.__name__}:{k}"] = v
return EvalResult(
metrics=all_metrics,
)

View file

@ -9,34 +9,6 @@ from llama_stack.apis.evals.evals import BaseScorer, EvalResult, SingleEvalResul
from llama_stack.apis.datasets.datasets import * # noqa: F401 F403 from llama_stack.apis.datasets.datasets import * # noqa: F401 F403
class AggregateScorer(BaseScorer[ScorerInputSample]):
def __init__(self, scorers: List[BaseScorer[ScorerInputSample]]):
self.scorers = scorers
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
all_score_data = {}
for scorer in self.scorers:
score_data = scorer.score_sample(scorer_input_sample).score_data
for k, v in score_data.items():
all_score_data[k] = v
return SingleEvalResult(
score_data=all_score_data,
)
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
all_metrics = {}
for scorer in self.scorers:
metrics = scorer.aggregate_results(eval_results).metrics
for k, v in metrics.items():
all_metrics[f"{scorer.__class__.__name__}:{k}"] = v
return EvalResult(
metrics=all_metrics,
)
class RandomScorer(BaseScorer[ScorerInputSample]): class RandomScorer(BaseScorer[ScorerInputSample]):
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult: def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
return SingleEvalResult(score_data={"random": random.random()}) return SingleEvalResult(score_data={"random": random.random()})

View file

@ -4,6 +4,8 @@
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
from llama_stack.distribution.registry.datasets import DatasetRegistry from llama_stack.distribution.registry.datasets import DatasetRegistry
from llama_stack.distribution.registry.scorers import ScorerRegistry
from llama_stack.providers.impls.meta_reference.evals.scorer.aggregate_scorer import * # noqa: F403
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403 from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
from llama_stack.providers.impls.meta_reference.evals.generator.inference_generator import ( from llama_stack.providers.impls.meta_reference.evals.generator.inference_generator import (
InferenceGenerator, InferenceGenerator,
@ -59,11 +61,14 @@ class RunEvalTask(BaseTask):
cprint(postprocessed, "blue") cprint(postprocessed, "blue")
# F3 - scorer # F3 - scorer
scorer_config_list = eval_task_config.scoring_config.scorer_config_list
scorer_list = []
for s_conf in scorer_config_list:
scorer = ScorerRegistry.get(s_conf.scorer_name)
scorer_list.append(scorer())
scorer = AggregateScorer( scorer = AggregateScorer(
scorers=[ scorers=scorer_list,
AccuracyScorer(),
RandomScorer(),
]
) )
scorer_results = scorer.score(postprocessed) scorer_results = scorer.score(postprocessed)