mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
scorer registry
This commit is contained in:
parent
9c501d042b
commit
c50686b6fe
5 changed files with 55 additions and 32 deletions
|
@ -5,9 +5,19 @@
|
|||
# the root directory of this source tree.
|
||||
# TODO: make these import config based
|
||||
from llama_stack.apis.evals import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
|
||||
|
||||
from ..registry import Registry
|
||||
|
||||
|
||||
class ScorerRegistry(Registry[BaseScorer]):
|
||||
_REGISTRY: Dict[str, BaseScorer] = {}
|
||||
|
||||
|
||||
SCORER_REGISTRY = {
|
||||
"accuracy": AccuracyScorer,
|
||||
"random": RandomScorer,
|
||||
}
|
||||
|
||||
for k, v in SCORER_REGISTRY.items():
|
||||
ScorerRegistry.register(k, v)
|
||||
|
|
|
@ -53,6 +53,7 @@ class MetaReferenceEvalsImpl(Evals):
|
|||
scoring_config=EvaluateScoringConfig(
|
||||
scorer_config_list=[
|
||||
EvaluateSingleScorerConfig(scorer_name="accuracy"),
|
||||
EvaluateSingleScorerConfig(scorer_name="random"),
|
||||
]
|
||||
),
|
||||
)
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_stack.apis.evals.evals import BaseScorer, EvalResult, SingleEvalResult
|
||||
from llama_stack.apis.datasets.datasets import * # noqa: F401 F403
|
||||
|
||||
|
||||
class AggregateScorer(BaseScorer[ScorerInputSample]):
|
||||
def __init__(self, scorers: List[BaseScorer[ScorerInputSample]]):
|
||||
self.scorers = scorers
|
||||
|
||||
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
|
||||
all_score_data = {}
|
||||
for scorer in self.scorers:
|
||||
score_data = scorer.score_sample(scorer_input_sample).score_data
|
||||
for k, v in score_data.items():
|
||||
all_score_data[k] = v
|
||||
|
||||
return SingleEvalResult(
|
||||
score_data=all_score_data,
|
||||
)
|
||||
|
||||
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
|
||||
all_metrics = {}
|
||||
|
||||
for scorer in self.scorers:
|
||||
metrics = scorer.aggregate_results(eval_results).metrics
|
||||
for k, v in metrics.items():
|
||||
all_metrics[f"{scorer.__class__.__name__}:{k}"] = v
|
||||
|
||||
return EvalResult(
|
||||
metrics=all_metrics,
|
||||
)
|
|
@ -9,34 +9,6 @@ from llama_stack.apis.evals.evals import BaseScorer, EvalResult, SingleEvalResul
|
|||
from llama_stack.apis.datasets.datasets import * # noqa: F401 F403
|
||||
|
||||
|
||||
class AggregateScorer(BaseScorer[ScorerInputSample]):
|
||||
def __init__(self, scorers: List[BaseScorer[ScorerInputSample]]):
|
||||
self.scorers = scorers
|
||||
|
||||
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
|
||||
all_score_data = {}
|
||||
for scorer in self.scorers:
|
||||
score_data = scorer.score_sample(scorer_input_sample).score_data
|
||||
for k, v in score_data.items():
|
||||
all_score_data[k] = v
|
||||
|
||||
return SingleEvalResult(
|
||||
score_data=all_score_data,
|
||||
)
|
||||
|
||||
def aggregate_results(self, eval_results: List[SingleEvalResult]) -> EvalResult:
|
||||
all_metrics = {}
|
||||
|
||||
for scorer in self.scorers:
|
||||
metrics = scorer.aggregate_results(eval_results).metrics
|
||||
for k, v in metrics.items():
|
||||
all_metrics[f"{scorer.__class__.__name__}:{k}"] = v
|
||||
|
||||
return EvalResult(
|
||||
metrics=all_metrics,
|
||||
)
|
||||
|
||||
|
||||
class RandomScorer(BaseScorer[ScorerInputSample]):
|
||||
def score_sample(self, scorer_input_sample: ScorerInputSample) -> SingleEvalResult:
|
||||
return SingleEvalResult(score_data={"random": random.random()})
|
||||
|
|
|
@ -4,6 +4,8 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_stack.distribution.registry.datasets import DatasetRegistry
|
||||
from llama_stack.distribution.registry.scorers import ScorerRegistry
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.aggregate_scorer import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.scorer.basic_scorers import * # noqa: F403
|
||||
from llama_stack.providers.impls.meta_reference.evals.generator.inference_generator import (
|
||||
InferenceGenerator,
|
||||
|
@ -59,11 +61,14 @@ class RunEvalTask(BaseTask):
|
|||
cprint(postprocessed, "blue")
|
||||
|
||||
# F3 - scorer
|
||||
scorer_config_list = eval_task_config.scoring_config.scorer_config_list
|
||||
scorer_list = []
|
||||
for s_conf in scorer_config_list:
|
||||
scorer = ScorerRegistry.get(s_conf.scorer_name)
|
||||
scorer_list.append(scorer())
|
||||
|
||||
scorer = AggregateScorer(
|
||||
scorers=[
|
||||
AccuracyScorer(),
|
||||
RandomScorer(),
|
||||
]
|
||||
scorers=scorer_list,
|
||||
)
|
||||
|
||||
scorer_results = scorer.score(postprocessed)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue