mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-05 12:21:52 +00:00
Merge branch 'main' into chroma
This commit is contained in:
commit
c66ebae9b6
207 changed files with 15490 additions and 7927 deletions
|
@ -706,6 +706,7 @@ class Agents(Protocol):
|
|||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
include: list[str] | None = None,
|
||||
max_infer_iters: int | None = 10, # this is an extension to the OpenAI API
|
||||
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Create a new OpenAI response.
|
||||
|
@ -713,6 +714,7 @@ class Agents(Protocol):
|
|||
:param input: Input message(s) to create the response.
|
||||
:param model: The underlying LLM used for completions.
|
||||
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
|
||||
:param include: (Optional) Additional fields to include in the response.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -170,6 +170,23 @@ class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
|
|||
type: Literal["web_search_call"] = "web_search_call"
|
||||
|
||||
|
||||
class OpenAIResponseOutputMessageFileSearchToolCallResults(BaseModel):
|
||||
"""Search results returned by the file search operation.
|
||||
|
||||
:param attributes: (Optional) Key-value attributes associated with the file
|
||||
:param file_id: Unique identifier of the file containing the result
|
||||
:param filename: Name of the file containing the result
|
||||
:param score: Relevance score for this search result (between 0 and 1)
|
||||
:param text: Text content of the search result
|
||||
"""
|
||||
|
||||
attributes: dict[str, Any]
|
||||
file_id: str
|
||||
filename: str
|
||||
score: float
|
||||
text: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
|
||||
"""File search tool call output message for OpenAI responses.
|
||||
|
@ -185,7 +202,7 @@ class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
|
|||
queries: list[str]
|
||||
status: str
|
||||
type: Literal["file_search_call"] = "file_search_call"
|
||||
results: list[dict[str, Any]] | None = None
|
||||
results: list[OpenAIResponseOutputMessageFileSearchToolCallResults] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
@ -606,6 +623,62 @@ class OpenAIResponseObjectStreamResponseMcpCallCompleted(BaseModel):
|
|||
type: Literal["response.mcp_call.completed"] = "response.mcp_call.completed"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartOutputText(BaseModel):
|
||||
type: Literal["output_text"] = "output_text"
|
||||
text: str
|
||||
# TODO: add annotations, logprobs, etc.
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseContentPartRefusal(BaseModel):
|
||||
type: Literal["refusal"] = "refusal"
|
||||
refusal: str
|
||||
|
||||
|
||||
OpenAIResponseContentPart = Annotated[
|
||||
OpenAIResponseContentPartOutputText | OpenAIResponseContentPartRefusal,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(OpenAIResponseContentPart, name="OpenAIResponseContentPart")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseContentPartAdded(BaseModel):
|
||||
"""Streaming event for when a new content part is added to a response item.
|
||||
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param part: The content part that was added
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.added"
|
||||
"""
|
||||
|
||||
response_id: str
|
||||
item_id: str
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.added"] = "response.content_part.added"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OpenAIResponseObjectStreamResponseContentPartDone(BaseModel):
|
||||
"""Streaming event for when a content part is completed.
|
||||
|
||||
:param response_id: Unique identifier of the response containing this content
|
||||
:param item_id: Unique identifier of the output item containing this content part
|
||||
:param part: The completed content part
|
||||
:param sequence_number: Sequential number for ordering streaming events
|
||||
:param type: Event type identifier, always "response.content_part.done"
|
||||
"""
|
||||
|
||||
response_id: str
|
||||
item_id: str
|
||||
part: OpenAIResponseContentPart
|
||||
sequence_number: int
|
||||
type: Literal["response.content_part.done"] = "response.content_part.done"
|
||||
|
||||
|
||||
OpenAIResponseObjectStream = Annotated[
|
||||
OpenAIResponseObjectStreamResponseCreated
|
||||
| OpenAIResponseObjectStreamResponseOutputItemAdded
|
||||
|
@ -625,6 +698,8 @@ OpenAIResponseObjectStream = Annotated[
|
|||
| OpenAIResponseObjectStreamResponseMcpCallInProgress
|
||||
| OpenAIResponseObjectStreamResponseMcpCallFailed
|
||||
| OpenAIResponseObjectStreamResponseMcpCallCompleted
|
||||
| OpenAIResponseObjectStreamResponseContentPartAdded
|
||||
| OpenAIResponseObjectStreamResponseContentPartDone
|
||||
| OpenAIResponseObjectStreamResponseCompleted,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
|
9
llama_stack/apis/batches/__init__.py
Normal file
9
llama_stack/apis/batches/__init__.py
Normal file
|
@ -0,0 +1,9 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .batches import Batches, BatchObject, ListBatchesResponse
|
||||
|
||||
__all__ = ["Batches", "BatchObject", "ListBatchesResponse"]
|
89
llama_stack/apis/batches/batches.py
Normal file
89
llama_stack/apis/batches/batches.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Literal, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
try:
|
||||
from openai.types import Batch as BatchObject
|
||||
except ImportError as e:
|
||||
raise ImportError("OpenAI package is required for batches API. Please install it with: pip install openai") from e
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ListBatchesResponse(BaseModel):
|
||||
"""Response containing a list of batch objects."""
|
||||
|
||||
object: Literal["list"] = "list"
|
||||
data: list[BatchObject] = Field(..., description="List of batch objects")
|
||||
first_id: str | None = Field(default=None, description="ID of the first batch in the list")
|
||||
last_id: str | None = Field(default=None, description="ID of the last batch in the list")
|
||||
has_more: bool = Field(default=False, description="Whether there are more batches available")
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Batches(Protocol):
|
||||
"""Protocol for batch processing API operations.
|
||||
|
||||
The Batches API enables efficient processing of multiple requests in a single operation,
|
||||
particularly useful for processing large datasets, batch evaluation workflows, and
|
||||
cost-effective inference at scale.
|
||||
|
||||
Note: This API is currently under active development and may undergo changes.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/batches", method="POST")
|
||||
async def create_batch(
|
||||
self,
|
||||
input_file_id: str,
|
||||
endpoint: str,
|
||||
completion_window: Literal["24h"],
|
||||
metadata: dict[str, str] | None = None,
|
||||
) -> BatchObject:
|
||||
"""Create a new batch for processing multiple API requests.
|
||||
|
||||
:param input_file_id: The ID of an uploaded file containing requests for the batch.
|
||||
:param endpoint: The endpoint to be used for all requests in the batch.
|
||||
:param completion_window: The time window within which the batch should be processed.
|
||||
:param metadata: Optional metadata for the batch.
|
||||
:returns: The created batch object.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches/{batch_id}", method="GET")
|
||||
async def retrieve_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Retrieve information about a specific batch.
|
||||
|
||||
:param batch_id: The ID of the batch to retrieve.
|
||||
:returns: The batch object.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches/{batch_id}/cancel", method="POST")
|
||||
async def cancel_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Cancel a batch that is in progress.
|
||||
|
||||
:param batch_id: The ID of the batch to cancel.
|
||||
:returns: The updated batch object.
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/batches", method="GET")
|
||||
async def list_batches(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int = 20,
|
||||
) -> ListBatchesResponse:
|
||||
"""List all batches for the current user.
|
||||
|
||||
:param after: A cursor for pagination; returns batches after this batch ID.
|
||||
:param limit: Number of batches to return (default 20, max 100).
|
||||
:returns: A list of batch objects.
|
||||
"""
|
||||
...
|
|
@ -62,3 +62,20 @@ class SessionNotFoundError(ValueError):
|
|||
def __init__(self, session_name: str) -> None:
|
||||
message = f"Session '{session_name}' not found or access denied."
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ModelTypeError(TypeError):
|
||||
"""raised when a model is present but not the correct type"""
|
||||
|
||||
def __init__(self, model_name: str, model_type: str, expected_model_type: str) -> None:
|
||||
message = (
|
||||
f"Model '{model_name}' is of type '{model_type}' rather than the expected type '{expected_model_type}'"
|
||||
)
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ConflictError(ValueError):
|
||||
"""raised when an operation cannot be performed due to a conflict with the current state"""
|
||||
|
||||
def __init__(self, message: str) -> None:
|
||||
super().__init__(message)
|
||||
|
|
|
@ -86,6 +86,7 @@ class Api(Enum, metaclass=DynamicApiMeta):
|
|||
:cvar inference: Text generation, chat completions, and embeddings
|
||||
:cvar safety: Content moderation and safety shields
|
||||
:cvar agents: Agent orchestration and execution
|
||||
:cvar batches: Batch processing for asynchronous API requests
|
||||
:cvar vector_io: Vector database operations and queries
|
||||
:cvar datasetio: Dataset input/output operations
|
||||
:cvar scoring: Model output evaluation and scoring
|
||||
|
@ -108,6 +109,7 @@ class Api(Enum, metaclass=DynamicApiMeta):
|
|||
inference = "inference"
|
||||
safety = "safety"
|
||||
agents = "agents"
|
||||
batches = "batches"
|
||||
vector_io = "vector_io"
|
||||
datasetio = "datasetio"
|
||||
scoring = "scoring"
|
||||
|
|
|
@ -22,6 +22,7 @@ class OpenAIFilePurpose(StrEnum):
|
|||
"""
|
||||
|
||||
ASSISTANTS = "assistants"
|
||||
BATCH = "batch"
|
||||
# TODO: Add other purposes as needed
|
||||
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum, StrEnum
|
||||
from enum import Enum
|
||||
from typing import Any, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
@ -15,27 +15,6 @@ from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
|||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
# OpenAI Categories to return in the response
|
||||
class OpenAICategories(StrEnum):
|
||||
"""
|
||||
Required set of categories in moderations api response
|
||||
"""
|
||||
|
||||
VIOLENCE = "violence"
|
||||
VIOLENCE_GRAPHIC = "violence/graphic"
|
||||
HARRASMENT = "harassment"
|
||||
HARRASMENT_THREATENING = "harassment/threatening"
|
||||
HATE = "hate"
|
||||
HATE_THREATENING = "hate/threatening"
|
||||
ILLICIT = "illicit"
|
||||
ILLICIT_VIOLENT = "illicit/violent"
|
||||
SEXUAL = "sexual"
|
||||
SEXUAL_MINORS = "sexual/minors"
|
||||
SELF_HARM = "self-harm"
|
||||
SELF_HARM_INTENT = "self-harm/intent"
|
||||
SELF_HARM_INSTRUCTIONS = "self-harm/instructions"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ModerationObjectResults(BaseModel):
|
||||
"""A moderation object.
|
||||
|
@ -43,20 +22,6 @@ class ModerationObjectResults(BaseModel):
|
|||
:param categories: A list of the categories, and whether they are flagged or not.
|
||||
:param category_applied_input_types: A list of the categories along with the input type(s) that the score applies to.
|
||||
:param category_scores: A list of the categories along with their scores as predicted by model.
|
||||
Required set of categories that need to be in response
|
||||
- violence
|
||||
- violence/graphic
|
||||
- harassment
|
||||
- harassment/threatening
|
||||
- hate
|
||||
- hate/threatening
|
||||
- illicit
|
||||
- illicit/violent
|
||||
- sexual
|
||||
- sexual/minors
|
||||
- self-harm
|
||||
- self-harm/intent
|
||||
- self-harm/instructions
|
||||
"""
|
||||
|
||||
flagged: bool
|
||||
|
|
|
@ -91,7 +91,7 @@ def get_provider_dependencies(
|
|||
|
||||
|
||||
def print_pip_install_help(config: BuildConfig):
|
||||
normal_deps, special_deps = get_provider_dependencies(config)
|
||||
normal_deps, special_deps, _ = get_provider_dependencies(config)
|
||||
|
||||
cprint(
|
||||
f"Please install needed dependencies using the following commands:\n\nuv pip install {' '.join(normal_deps)}",
|
||||
|
|
|
@ -380,8 +380,17 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
json_content = json.dumps(convert_pydantic_to_json_value(result))
|
||||
|
||||
filtered_body = {k: v for k, v in body.items() if not isinstance(v, LibraryClientUploadFile)}
|
||||
|
||||
status_code = httpx.codes.OK
|
||||
|
||||
if options.method.upper() == "DELETE" and result is None:
|
||||
status_code = httpx.codes.NO_CONTENT
|
||||
|
||||
if status_code == httpx.codes.NO_CONTENT:
|
||||
json_content = ""
|
||||
|
||||
mock_response = httpx.Response(
|
||||
status_code=httpx.codes.OK,
|
||||
status_code=status_code,
|
||||
content=json_content.encode("utf-8"),
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
|
|
|
@ -8,6 +8,7 @@ import inspect
|
|||
from typing import Any
|
||||
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.batches import Batches
|
||||
from llama_stack.apis.benchmarks import Benchmarks
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
|
@ -75,6 +76,7 @@ def api_protocol_map(external_apis: dict[Api, ExternalApiSpec] | None = None) ->
|
|||
Api.agents: Agents,
|
||||
Api.inference: Inference,
|
||||
Api.inspect: Inspect,
|
||||
Api.batches: Batches,
|
||||
Api.vector_io: VectorIO,
|
||||
Api.vector_dbs: VectorDBs,
|
||||
Api.models: Models,
|
||||
|
|
|
@ -18,7 +18,7 @@ from llama_stack.apis.common.content_types import (
|
|||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
)
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
|
||||
from llama_stack.apis.inference import (
|
||||
BatchChatCompletionResponse,
|
||||
BatchCompletionResponse,
|
||||
|
@ -65,7 +65,7 @@ from llama_stack.providers.datatypes import HealthResponse, HealthStatus, Routin
|
|||
from llama_stack.providers.utils.inference.inference_store import InferenceStore
|
||||
from llama_stack.providers.utils.telemetry.tracing import get_current_span
|
||||
|
||||
logger = get_logger(name=__name__, category="core")
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
||||
class InferenceRouter(Inference):
|
||||
|
@ -177,6 +177,15 @@ class InferenceRouter(Inference):
|
|||
encoded = self.formatter.encode_content(messages)
|
||||
return len(encoded.tokens) if encoded and encoded.tokens else 0
|
||||
|
||||
async def _get_model(self, model_id: str, expected_model_type: str) -> Model:
|
||||
"""takes a model id and gets model after ensuring that it is accessible and of the correct type"""
|
||||
model = await self.routing_table.get_model(model_id)
|
||||
if model is None:
|
||||
raise ModelNotFoundError(model_id)
|
||||
if model.model_type != expected_model_type:
|
||||
raise ModelTypeError(model_id, model.model_type, expected_model_type)
|
||||
return model
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -195,11 +204,7 @@ class InferenceRouter(Inference):
|
|||
)
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.routing_table.get_model(model_id)
|
||||
if model is None:
|
||||
raise ModelNotFoundError(model_id)
|
||||
if model.model_type == ModelType.embedding:
|
||||
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
|
||||
model = await self._get_model(model_id, ModelType.llm)
|
||||
if tool_config:
|
||||
if tool_choice and tool_choice != tool_config.tool_choice:
|
||||
raise ValueError("tool_choice and tool_config.tool_choice must match")
|
||||
|
@ -301,11 +306,7 @@ class InferenceRouter(Inference):
|
|||
logger.debug(
|
||||
f"InferenceRouter.completion: {model_id=}, {stream=}, {content=}, {sampling_params=}, {response_format=}",
|
||||
)
|
||||
model = await self.routing_table.get_model(model_id)
|
||||
if model is None:
|
||||
raise ModelNotFoundError(model_id)
|
||||
if model.model_type == ModelType.embedding:
|
||||
raise ValueError(f"Model '{model_id}' is an embedding model and does not support chat completions")
|
||||
model = await self._get_model(model_id, ModelType.llm)
|
||||
provider = await self.routing_table.get_provider_impl(model_id)
|
||||
params = dict(
|
||||
model_id=model_id,
|
||||
|
@ -355,11 +356,7 @@ class InferenceRouter(Inference):
|
|||
task_type: EmbeddingTaskType | None = None,
|
||||
) -> EmbeddingsResponse:
|
||||
logger.debug(f"InferenceRouter.embeddings: {model_id}")
|
||||
model = await self.routing_table.get_model(model_id)
|
||||
if model is None:
|
||||
raise ModelNotFoundError(model_id)
|
||||
if model.model_type == ModelType.llm:
|
||||
raise ValueError(f"Model '{model_id}' is an LLM model and does not support embeddings")
|
||||
await self._get_model(model_id, ModelType.embedding)
|
||||
provider = await self.routing_table.get_provider_impl(model_id)
|
||||
return await provider.embeddings(
|
||||
model_id=model_id,
|
||||
|
@ -395,12 +392,7 @@ class InferenceRouter(Inference):
|
|||
logger.debug(
|
||||
f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}",
|
||||
)
|
||||
model_obj = await self.routing_table.get_model(model)
|
||||
if model_obj is None:
|
||||
raise ModelNotFoundError(model)
|
||||
if model_obj.model_type == ModelType.embedding:
|
||||
raise ValueError(f"Model '{model}' is an embedding model and does not support completions")
|
||||
|
||||
model_obj = await self._get_model(model, ModelType.llm)
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
prompt=prompt,
|
||||
|
@ -476,11 +468,7 @@ class InferenceRouter(Inference):
|
|||
logger.debug(
|
||||
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
|
||||
)
|
||||
model_obj = await self.routing_table.get_model(model)
|
||||
if model_obj is None:
|
||||
raise ModelNotFoundError(model)
|
||||
if model_obj.model_type == ModelType.embedding:
|
||||
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
|
||||
model_obj = await self._get_model(model, ModelType.llm)
|
||||
|
||||
# Use the OpenAI client for a bit of extra input validation without
|
||||
# exposing the OpenAI client itself as part of our API surface
|
||||
|
@ -567,12 +555,7 @@ class InferenceRouter(Inference):
|
|||
logger.debug(
|
||||
f"InferenceRouter.openai_embeddings: {model=}, input_type={type(input)}, {encoding_format=}, {dimensions=}",
|
||||
)
|
||||
model_obj = await self.routing_table.get_model(model)
|
||||
if model_obj is None:
|
||||
raise ModelNotFoundError(model)
|
||||
if model_obj.model_type != ModelType.embedding:
|
||||
raise ValueError(f"Model '{model}' is not an embedding model")
|
||||
|
||||
model_obj = await self._get_model(model, ModelType.embedding)
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
input=input,
|
||||
|
@ -871,4 +854,5 @@ class InferenceRouter(Inference):
|
|||
model=model.identifier,
|
||||
object="chat.completion",
|
||||
)
|
||||
logger.debug(f"InferenceRouter.completion_response: {final_response}")
|
||||
await self.store.store_chat_completion(final_response, messages)
|
||||
|
|
|
@ -10,7 +10,7 @@ from llama_stack.apis.inference import (
|
|||
Message,
|
||||
)
|
||||
from llama_stack.apis.safety import RunShieldResponse, Safety
|
||||
from llama_stack.apis.safety.safety import ModerationObject, OpenAICategories
|
||||
from llama_stack.apis.safety.safety import ModerationObject
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import RoutingTable
|
||||
|
@ -82,20 +82,5 @@ class SafetyRouter(Safety):
|
|||
input=input,
|
||||
model=model,
|
||||
)
|
||||
self._validate_required_categories_exist(response)
|
||||
|
||||
return response
|
||||
|
||||
def _validate_required_categories_exist(self, response: ModerationObject) -> None:
|
||||
"""Validate the ProviderImpl response contains the required Open AI moderations categories."""
|
||||
required_categories = list(map(str, OpenAICategories))
|
||||
|
||||
categories = response.results[0].categories
|
||||
category_applied_input_types = response.results[0].category_applied_input_types
|
||||
category_scores = response.results[0].category_scores
|
||||
|
||||
for i in [categories, category_applied_input_types, category_scores]:
|
||||
if not set(required_categories).issubset(set(i.keys())):
|
||||
raise ValueError(
|
||||
f"ProviderImpl response is missing required categories: {set(required_categories) - set(i.keys())}"
|
||||
)
|
||||
|
|
|
@ -63,6 +63,8 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models):
|
|||
|
||||
async def get_provider_impl(self, model_id: str) -> Any:
|
||||
model = await lookup_model(self, model_id)
|
||||
if model.provider_id not in self.impls_by_provider_id:
|
||||
raise ValueError(f"Provider {model.provider_id} not found in the routing table")
|
||||
return self.impls_by_provider_id[model.provider_id]
|
||||
|
||||
async def register_model(
|
||||
|
|
|
@ -8,7 +8,7 @@ from typing import Any
|
|||
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, VectorStoreNotFoundError
|
||||
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError, VectorStoreNotFoundError
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.apis.resource import ResourceType
|
||||
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
|
||||
|
@ -66,7 +66,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
|
|||
if model is None:
|
||||
raise ModelNotFoundError(embedding_model)
|
||||
if model.model_type != ModelType.embedding:
|
||||
raise ValueError(f"Model {embedding_model} is not an embedding model")
|
||||
raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding)
|
||||
if "embedding_dimension" not in model.metadata:
|
||||
raise ValueError(f"Model {embedding_model} does not have an embedding dimension")
|
||||
vector_db_data = {
|
||||
|
|
|
@ -21,16 +21,18 @@ from importlib.metadata import version as parse_version
|
|||
from pathlib import Path
|
||||
from typing import Annotated, Any, get_origin
|
||||
|
||||
import httpx
|
||||
import rich.pretty
|
||||
import yaml
|
||||
from aiohttp import hdrs
|
||||
from fastapi import Body, FastAPI, HTTPException, Request
|
||||
from fastapi import Body, FastAPI, HTTPException, Request, Response
|
||||
from fastapi import Path as FastapiPath
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.responses import JSONResponse, StreamingResponse
|
||||
from openai import BadRequestError
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from llama_stack.apis.common.errors import ConflictError, ResourceNotFoundError
|
||||
from llama_stack.apis.common.responses import PaginatedResponse
|
||||
from llama_stack.cli.utils import add_config_distro_args, get_config_from_args
|
||||
from llama_stack.core.access_control.access_control import AccessDeniedError
|
||||
|
@ -115,7 +117,7 @@ def translate_exception(exc: Exception) -> HTTPException | RequestValidationErro
|
|||
|
||||
if isinstance(exc, RequestValidationError):
|
||||
return HTTPException(
|
||||
status_code=400,
|
||||
status_code=httpx.codes.BAD_REQUEST,
|
||||
detail={
|
||||
"errors": [
|
||||
{
|
||||
|
@ -127,21 +129,25 @@ def translate_exception(exc: Exception) -> HTTPException | RequestValidationErro
|
|||
]
|
||||
},
|
||||
)
|
||||
elif isinstance(exc, ConflictError):
|
||||
return HTTPException(status_code=409, detail=str(exc))
|
||||
elif isinstance(exc, ResourceNotFoundError):
|
||||
return HTTPException(status_code=404, detail=str(exc))
|
||||
elif isinstance(exc, ValueError):
|
||||
return HTTPException(status_code=400, detail=f"Invalid value: {str(exc)}")
|
||||
return HTTPException(status_code=httpx.codes.BAD_REQUEST, detail=f"Invalid value: {str(exc)}")
|
||||
elif isinstance(exc, BadRequestError):
|
||||
return HTTPException(status_code=400, detail=str(exc))
|
||||
return HTTPException(status_code=httpx.codes.BAD_REQUEST, detail=str(exc))
|
||||
elif isinstance(exc, PermissionError | AccessDeniedError):
|
||||
return HTTPException(status_code=403, detail=f"Permission denied: {str(exc)}")
|
||||
return HTTPException(status_code=httpx.codes.FORBIDDEN, detail=f"Permission denied: {str(exc)}")
|
||||
elif isinstance(exc, asyncio.TimeoutError | TimeoutError):
|
||||
return HTTPException(status_code=504, detail=f"Operation timed out: {str(exc)}")
|
||||
return HTTPException(status_code=httpx.codes.GATEWAY_TIMEOUT, detail=f"Operation timed out: {str(exc)}")
|
||||
elif isinstance(exc, NotImplementedError):
|
||||
return HTTPException(status_code=501, detail=f"Not implemented: {str(exc)}")
|
||||
return HTTPException(status_code=httpx.codes.NOT_IMPLEMENTED, detail=f"Not implemented: {str(exc)}")
|
||||
elif isinstance(exc, AuthenticationRequiredError):
|
||||
return HTTPException(status_code=401, detail=f"Authentication required: {str(exc)}")
|
||||
return HTTPException(status_code=httpx.codes.UNAUTHORIZED, detail=f"Authentication required: {str(exc)}")
|
||||
else:
|
||||
return HTTPException(
|
||||
status_code=500,
|
||||
status_code=httpx.codes.INTERNAL_SERVER_ERROR,
|
||||
detail="Internal server error: An unexpected error occurred.",
|
||||
)
|
||||
|
||||
|
@ -180,7 +186,6 @@ async def sse_generator(event_gen_coroutine):
|
|||
event_gen = await event_gen_coroutine
|
||||
async for item in event_gen:
|
||||
yield create_sse_event(item)
|
||||
await asyncio.sleep(0.01)
|
||||
except asyncio.CancelledError:
|
||||
logger.info("Generator cancelled")
|
||||
if event_gen:
|
||||
|
@ -236,6 +241,10 @@ def create_dynamic_typed_route(func: Any, method: str, route: str) -> Callable:
|
|||
result = await maybe_await(value)
|
||||
if isinstance(result, PaginatedResponse) and result.url is None:
|
||||
result.url = route
|
||||
|
||||
if method.upper() == "DELETE" and result is None:
|
||||
return Response(status_code=httpx.codes.NO_CONTENT)
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
if logger.isEnabledFor(logging.DEBUG):
|
||||
|
@ -352,7 +361,7 @@ class ClientVersionMiddleware:
|
|||
await send(
|
||||
{
|
||||
"type": "http.response.start",
|
||||
"status": 426,
|
||||
"status": httpx.codes.UPGRADE_REQUIRED,
|
||||
"headers": [[b"content-type", b"application/json"]],
|
||||
}
|
||||
)
|
||||
|
|
|
@ -48,6 +48,8 @@ distribution_spec:
|
|||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_type: inline::reference
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
|
|
|
@ -2,6 +2,7 @@ version: 2
|
|||
image_name: ci-tests
|
||||
apis:
|
||||
- agents
|
||||
- batches
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
|
@ -204,6 +205,13 @@ providers:
|
|||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_id: reference
|
||||
provider_type: inline::reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/batches.db
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/registry.db
|
||||
|
|
|
@ -16,6 +16,7 @@ from llama_stack.distributions.template import DistributionTemplate, RunConfigSe
|
|||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.remote.vector_io.chroma import ChromaVectorIOConfig
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -71,9 +72,10 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
chromadb_provider = Provider(
|
||||
provider_id="chromadb",
|
||||
provider_type="remote::chromadb",
|
||||
config={
|
||||
"url": "${env.CHROMA_URL}",
|
||||
},
|
||||
config=ChromaVectorIOConfig.sample_run_config(
|
||||
f"~/.llama/distributions/{name}/",
|
||||
url="${env.CHROMADB_URL:=}",
|
||||
),
|
||||
)
|
||||
|
||||
inference_model = ModelInput(
|
||||
|
|
|
@ -26,7 +26,10 @@ providers:
|
|||
- provider_id: chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMA_URL}
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
|
@ -22,7 +22,10 @@ providers:
|
|||
- provider_id: chromadb
|
||||
provider_type: remote::chromadb
|
||||
config:
|
||||
url: ${env.CHROMA_URL}
|
||||
url: ${env.CHROMADB_URL:=}
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
|
|
|
@ -48,6 +48,8 @@ distribution_spec:
|
|||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_type: inline::reference
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
|
|
|
@ -2,6 +2,7 @@ version: 2
|
|||
image_name: starter
|
||||
apis:
|
||||
- agents
|
||||
- batches
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
|
@ -204,6 +205,13 @@ providers:
|
|||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
batches:
|
||||
- provider_id: reference
|
||||
provider_type: inline::reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/batches.db
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/registry.db
|
||||
|
|
|
@ -139,6 +139,9 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
BuildProvider(provider_type="inline::rag-runtime"),
|
||||
BuildProvider(provider_type="remote::model-context-protocol"),
|
||||
],
|
||||
"batches": [
|
||||
BuildProvider(provider_type="inline::reference"),
|
||||
],
|
||||
}
|
||||
files_provider = Provider(
|
||||
provider_id="meta-reference-files",
|
||||
|
|
|
@ -32,6 +32,7 @@ CATEGORIES = [
|
|||
"tools",
|
||||
"client",
|
||||
"telemetry",
|
||||
"openai_responses",
|
||||
]
|
||||
|
||||
# Initialize category levels with default level
|
||||
|
|
|
@ -236,6 +236,7 @@ class ChatFormat:
|
|||
arguments_json=json.dumps(tool_arguments),
|
||||
)
|
||||
)
|
||||
content = ""
|
||||
|
||||
return RawMessage(
|
||||
role="assistant",
|
||||
|
|
|
@ -48,8 +48,8 @@ from llama_stack.providers.utils.responses.responses_store import ResponsesStore
|
|||
|
||||
from .agent_instance import ChatAgent
|
||||
from .config import MetaReferenceAgentsImplConfig
|
||||
from .openai_responses import OpenAIResponsesImpl
|
||||
from .persistence import AgentInfo
|
||||
from .responses.openai_responses import OpenAIResponsesImpl
|
||||
|
||||
logger = logging.getLogger()
|
||||
|
||||
|
@ -327,10 +327,21 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
include: list[str] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
) -> OpenAIResponseObject:
|
||||
return await self.openai_responses_impl.create_openai_response(
|
||||
input, model, instructions, previous_response_id, store, stream, temperature, text, tools, max_infer_iters
|
||||
input,
|
||||
model,
|
||||
instructions,
|
||||
previous_response_id,
|
||||
store,
|
||||
stream,
|
||||
temperature,
|
||||
text,
|
||||
tools,
|
||||
include,
|
||||
max_infer_iters,
|
||||
)
|
||||
|
||||
async def list_openai_responses(
|
||||
|
|
|
@ -1,880 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.agents import Order
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
AllowedToolsFilter,
|
||||
ListOpenAIResponseInputItem,
|
||||
ListOpenAIResponseObject,
|
||||
OpenAIDeleteResponseObject,
|
||||
OpenAIResponseInput,
|
||||
OpenAIResponseInputFunctionToolCallOutput,
|
||||
OpenAIResponseInputMessageContent,
|
||||
OpenAIResponseInputMessageContentImage,
|
||||
OpenAIResponseInputMessageContentText,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseInputToolFileSearch,
|
||||
OpenAIResponseInputToolMCP,
|
||||
OpenAIResponseMessage,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseObjectStreamResponseOutputTextDelta,
|
||||
OpenAIResponseOutput,
|
||||
OpenAIResponseOutputMessageContent,
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
OpenAIResponseOutputMessageFileSearchToolCall,
|
||||
OpenAIResponseOutputMessageFunctionToolCall,
|
||||
OpenAIResponseOutputMessageMCPListTools,
|
||||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
OpenAIResponseText,
|
||||
OpenAIResponseTextFormat,
|
||||
WebSearchToolTypes,
|
||||
)
|
||||
from llama_stack.apis.common.content_types import TextContentItem
|
||||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoice,
|
||||
OpenAIDeveloperMessageParam,
|
||||
OpenAIImageURL,
|
||||
OpenAIJSONSchema,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatJSONObject,
|
||||
OpenAIResponseFormatJSONSchema,
|
||||
OpenAIResponseFormatParam,
|
||||
OpenAIResponseFormatText,
|
||||
OpenAISystemMessageParam,
|
||||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
)
|
||||
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
from llama_stack.providers.utils.responses.responses_store import ResponsesStore
|
||||
|
||||
logger = get_logger(name=__name__, category="openai_responses")
|
||||
|
||||
OPENAI_RESPONSES_PREFIX = "openai_responses:"
|
||||
|
||||
|
||||
async def _convert_response_content_to_chat_content(
|
||||
content: str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent],
|
||||
) -> str | list[OpenAIChatCompletionContentPartParam]:
|
||||
"""
|
||||
Convert the content parts from an OpenAI Response API request into OpenAI Chat Completion content parts.
|
||||
|
||||
The content schemas of each API look similar, but are not exactly the same.
|
||||
"""
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
|
||||
converted_parts = []
|
||||
for content_part in content:
|
||||
if isinstance(content_part, OpenAIResponseInputMessageContentText):
|
||||
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part.text))
|
||||
elif isinstance(content_part, OpenAIResponseOutputMessageContentOutputText):
|
||||
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part.text))
|
||||
elif isinstance(content_part, OpenAIResponseInputMessageContentImage):
|
||||
if content_part.image_url:
|
||||
image_url = OpenAIImageURL(url=content_part.image_url, detail=content_part.detail)
|
||||
converted_parts.append(OpenAIChatCompletionContentPartImageParam(image_url=image_url))
|
||||
elif isinstance(content_part, str):
|
||||
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part))
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Llama Stack OpenAI Responses does not yet support content type '{type(content_part)}' in this context"
|
||||
)
|
||||
return converted_parts
|
||||
|
||||
|
||||
async def _convert_response_input_to_chat_messages(
|
||||
input: str | list[OpenAIResponseInput],
|
||||
) -> list[OpenAIMessageParam]:
|
||||
"""
|
||||
Convert the input from an OpenAI Response API request into OpenAI Chat Completion messages.
|
||||
"""
|
||||
messages: list[OpenAIMessageParam] = []
|
||||
if isinstance(input, list):
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseInputFunctionToolCallOutput):
|
||||
messages.append(
|
||||
OpenAIToolMessageParam(
|
||||
content=input_item.output,
|
||||
tool_call_id=input_item.call_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(input_item, OpenAIResponseOutputMessageFunctionToolCall):
|
||||
tool_call = OpenAIChatCompletionToolCall(
|
||||
index=0,
|
||||
id=input_item.call_id,
|
||||
function=OpenAIChatCompletionToolCallFunction(
|
||||
name=input_item.name,
|
||||
arguments=input_item.arguments,
|
||||
),
|
||||
)
|
||||
messages.append(OpenAIAssistantMessageParam(tool_calls=[tool_call]))
|
||||
else:
|
||||
content = await _convert_response_content_to_chat_content(input_item.content)
|
||||
message_type = await _get_message_type_by_role(input_item.role)
|
||||
if message_type is None:
|
||||
raise ValueError(
|
||||
f"Llama Stack OpenAI Responses does not yet support message role '{input_item.role}' in this context"
|
||||
)
|
||||
messages.append(message_type(content=content))
|
||||
else:
|
||||
messages.append(OpenAIUserMessageParam(content=input))
|
||||
return messages
|
||||
|
||||
|
||||
async def _convert_chat_choice_to_response_message(choice: OpenAIChoice) -> OpenAIResponseMessage:
|
||||
"""
|
||||
Convert an OpenAI Chat Completion choice into an OpenAI Response output message.
|
||||
"""
|
||||
output_content = ""
|
||||
if isinstance(choice.message.content, str):
|
||||
output_content = choice.message.content
|
||||
elif isinstance(choice.message.content, OpenAIChatCompletionContentPartTextParam):
|
||||
output_content = choice.message.content.text
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Llama Stack OpenAI Responses does not yet support output content type: {type(choice.message.content)}"
|
||||
)
|
||||
|
||||
return OpenAIResponseMessage(
|
||||
id=f"msg_{uuid.uuid4()}",
|
||||
content=[OpenAIResponseOutputMessageContentOutputText(text=output_content)],
|
||||
status="completed",
|
||||
role="assistant",
|
||||
)
|
||||
|
||||
|
||||
async def _convert_response_text_to_chat_response_format(text: OpenAIResponseText) -> OpenAIResponseFormatParam:
|
||||
"""
|
||||
Convert an OpenAI Response text parameter into an OpenAI Chat Completion response format.
|
||||
"""
|
||||
if not text.format or text.format["type"] == "text":
|
||||
return OpenAIResponseFormatText(type="text")
|
||||
if text.format["type"] == "json_object":
|
||||
return OpenAIResponseFormatJSONObject()
|
||||
if text.format["type"] == "json_schema":
|
||||
return OpenAIResponseFormatJSONSchema(
|
||||
json_schema=OpenAIJSONSchema(name=text.format["name"], schema=text.format["schema"])
|
||||
)
|
||||
raise ValueError(f"Unsupported text format: {text.format}")
|
||||
|
||||
|
||||
async def _get_message_type_by_role(role: str):
|
||||
role_to_type = {
|
||||
"user": OpenAIUserMessageParam,
|
||||
"system": OpenAISystemMessageParam,
|
||||
"assistant": OpenAIAssistantMessageParam,
|
||||
"developer": OpenAIDeveloperMessageParam,
|
||||
}
|
||||
return role_to_type.get(role)
|
||||
|
||||
|
||||
class OpenAIResponsePreviousResponseWithInputItems(BaseModel):
|
||||
input_items: ListOpenAIResponseInputItem
|
||||
response: OpenAIResponseObject
|
||||
|
||||
|
||||
class ChatCompletionContext(BaseModel):
|
||||
model: str
|
||||
messages: list[OpenAIMessageParam]
|
||||
response_tools: list[OpenAIResponseInputTool] | None = None
|
||||
chat_tools: list[ChatCompletionToolParam] | None = None
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP]
|
||||
temperature: float | None
|
||||
response_format: OpenAIResponseFormatParam
|
||||
|
||||
|
||||
class OpenAIResponsesImpl:
|
||||
def __init__(
|
||||
self,
|
||||
inference_api: Inference,
|
||||
tool_groups_api: ToolGroups,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
responses_store: ResponsesStore,
|
||||
vector_io_api: VectorIO, # VectorIO
|
||||
):
|
||||
self.inference_api = inference_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.responses_store = responses_store
|
||||
self.vector_io_api = vector_io_api
|
||||
|
||||
async def _prepend_previous_response(
|
||||
self, input: str | list[OpenAIResponseInput], previous_response_id: str | None = None
|
||||
):
|
||||
if previous_response_id:
|
||||
previous_response_with_input = await self.responses_store.get_response_object(previous_response_id)
|
||||
|
||||
# previous response input items
|
||||
new_input_items = previous_response_with_input.input
|
||||
|
||||
# previous response output items
|
||||
new_input_items.extend(previous_response_with_input.output)
|
||||
|
||||
# new input items from the current request
|
||||
if isinstance(input, str):
|
||||
new_input_items.append(OpenAIResponseMessage(content=input, role="user"))
|
||||
else:
|
||||
new_input_items.extend(input)
|
||||
|
||||
input = new_input_items
|
||||
|
||||
return input
|
||||
|
||||
async def _prepend_instructions(self, messages, instructions):
|
||||
if instructions:
|
||||
messages.insert(0, OpenAISystemMessageParam(content=instructions))
|
||||
|
||||
async def get_openai_response(
|
||||
self,
|
||||
response_id: str,
|
||||
) -> OpenAIResponseObject:
|
||||
response_with_input = await self.responses_store.get_response_object(response_id)
|
||||
return OpenAIResponseObject(**{k: v for k, v in response_with_input.model_dump().items() if k != "input"})
|
||||
|
||||
async def list_openai_responses(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int | None = 50,
|
||||
model: str | None = None,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseObject:
|
||||
return await self.responses_store.list_responses(after, limit, model, order)
|
||||
|
||||
async def list_openai_response_input_items(
|
||||
self,
|
||||
response_id: str,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
include: list[str] | None = None,
|
||||
limit: int | None = 20,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseInputItem:
|
||||
"""List input items for a given OpenAI response.
|
||||
|
||||
:param response_id: The ID of the response to retrieve input items for.
|
||||
:param after: An item ID to list items after, used for pagination.
|
||||
:param before: An item ID to list items before, used for pagination.
|
||||
:param include: Additional fields to include in the response.
|
||||
:param limit: A limit on the number of objects to be returned.
|
||||
:param order: The order to return the input items in.
|
||||
:returns: An ListOpenAIResponseInputItem.
|
||||
"""
|
||||
return await self.responses_store.list_response_input_items(response_id, after, before, include, limit, order)
|
||||
|
||||
async def _store_response(
|
||||
self,
|
||||
response: OpenAIResponseObject,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
) -> None:
|
||||
new_input_id = f"msg_{uuid.uuid4()}"
|
||||
if isinstance(input, str):
|
||||
# synthesize a message from the input string
|
||||
input_content = OpenAIResponseInputMessageContentText(text=input)
|
||||
input_content_item = OpenAIResponseMessage(
|
||||
role="user",
|
||||
content=[input_content],
|
||||
id=new_input_id,
|
||||
)
|
||||
input_items_data = [input_content_item]
|
||||
else:
|
||||
# we already have a list of messages
|
||||
input_items_data = []
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseMessage):
|
||||
# These may or may not already have an id, so dump to dict, check for id, and add if missing
|
||||
input_item_dict = input_item.model_dump()
|
||||
if "id" not in input_item_dict:
|
||||
input_item_dict["id"] = new_input_id
|
||||
input_items_data.append(OpenAIResponseMessage(**input_item_dict))
|
||||
else:
|
||||
input_items_data.append(input_item)
|
||||
|
||||
await self.responses_store.store_response_object(
|
||||
response_object=response,
|
||||
input=input_items_data,
|
||||
)
|
||||
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
):
|
||||
stream = bool(stream)
|
||||
text = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")) if text is None else text
|
||||
|
||||
stream_gen = self._create_streaming_response(
|
||||
input=input,
|
||||
model=model,
|
||||
instructions=instructions,
|
||||
previous_response_id=previous_response_id,
|
||||
store=store,
|
||||
temperature=temperature,
|
||||
text=text,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return stream_gen
|
||||
else:
|
||||
response = None
|
||||
async for stream_chunk in stream_gen:
|
||||
if stream_chunk.type == "response.completed":
|
||||
if response is not None:
|
||||
raise ValueError("The response stream completed multiple times! Earlier response: {response}")
|
||||
response = stream_chunk.response
|
||||
# don't leave the generator half complete!
|
||||
|
||||
if response is None:
|
||||
raise ValueError("The response stream never completed")
|
||||
return response
|
||||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
|
||||
# Input preprocessing
|
||||
input = await self._prepend_previous_response(input, previous_response_id)
|
||||
messages = await _convert_response_input_to_chat_messages(input)
|
||||
await self._prepend_instructions(messages, instructions)
|
||||
|
||||
# Structured outputs
|
||||
response_format = await _convert_response_text_to_chat_response_format(text)
|
||||
|
||||
# Tool setup, TODO: refactor this slightly since this can also yield events
|
||||
chat_tools, mcp_tool_to_server, mcp_list_message = (
|
||||
await self._convert_response_tools_to_chat_tools(tools) if tools else (None, {}, None)
|
||||
)
|
||||
if mcp_list_message:
|
||||
output_messages.append(mcp_list_message)
|
||||
|
||||
ctx = ChatCompletionContext(
|
||||
model=model,
|
||||
messages=messages,
|
||||
response_tools=tools,
|
||||
chat_tools=chat_tools,
|
||||
mcp_tool_to_server=mcp_tool_to_server,
|
||||
temperature=temperature,
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
# Create initial response and emit response.created immediately
|
||||
response_id = f"resp-{uuid.uuid4()}"
|
||||
created_at = int(time.time())
|
||||
|
||||
initial_response = OpenAIResponseObject(
|
||||
created_at=created_at,
|
||||
id=response_id,
|
||||
model=model,
|
||||
object="response",
|
||||
status="in_progress",
|
||||
output=output_messages.copy(),
|
||||
text=text,
|
||||
)
|
||||
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
|
||||
|
||||
n_iter = 0
|
||||
messages = ctx.messages.copy()
|
||||
|
||||
while True:
|
||||
completion_result = await self.inference_api.openai_chat_completion(
|
||||
model=ctx.model,
|
||||
messages=messages,
|
||||
tools=ctx.chat_tools,
|
||||
stream=True,
|
||||
temperature=ctx.temperature,
|
||||
response_format=ctx.response_format,
|
||||
)
|
||||
|
||||
# Process streaming chunks and build complete response
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
sequence_number = 0
|
||||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
|
||||
async for chunk in completion_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=0,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
if response_tool_call:
|
||||
# Don't attempt to concatenate arguments if we don't have any new argumentsAdd commentMore actions
|
||||
if tool_call.function.arguments:
|
||||
# Guard against an initial None argument before we concatenate
|
||||
response_tool_call.function.arguments = (
|
||||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
else:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Convert collected chunks to complete response
|
||||
if chat_response_tool_calls:
|
||||
tool_calls = [chat_response_tool_calls[i] for i in sorted(chat_response_tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content="".join(chat_response_content),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
current_response = OpenAIChatCompletion(
|
||||
id=chat_response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=chunk_finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
)
|
||||
|
||||
function_tool_calls = []
|
||||
non_function_tool_calls = []
|
||||
|
||||
next_turn_messages = messages.copy()
|
||||
for choice in current_response.choices:
|
||||
next_turn_messages.append(choice.message)
|
||||
|
||||
if choice.message.tool_calls and tools:
|
||||
for tool_call in choice.message.tool_calls:
|
||||
if _is_function_tool_call(tool_call, tools):
|
||||
function_tool_calls.append(tool_call)
|
||||
else:
|
||||
non_function_tool_calls.append(tool_call)
|
||||
else:
|
||||
output_messages.append(await _convert_chat_choice_to_response_message(choice))
|
||||
|
||||
# execute non-function tool calls
|
||||
for tool_call in non_function_tool_calls:
|
||||
tool_call_log, tool_response_message = await self._execute_tool_call(tool_call, ctx)
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
if tool_response_message:
|
||||
next_turn_messages.append(tool_response_message)
|
||||
|
||||
for tool_call in function_tool_calls:
|
||||
output_messages.append(
|
||||
OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments=tool_call.function.arguments or "",
|
||||
call_id=tool_call.id,
|
||||
name=tool_call.function.name or "",
|
||||
id=f"fc_{uuid.uuid4()}",
|
||||
status="completed",
|
||||
)
|
||||
)
|
||||
|
||||
if not function_tool_calls and not non_function_tool_calls:
|
||||
break
|
||||
|
||||
if function_tool_calls:
|
||||
logger.info("Exiting inference loop since there is a function (client-side) tool call")
|
||||
break
|
||||
|
||||
n_iter += 1
|
||||
if n_iter >= max_infer_iters:
|
||||
logger.info(f"Exiting inference loop since iteration count({n_iter}) exceeds {max_infer_iters=}")
|
||||
break
|
||||
|
||||
messages = next_turn_messages
|
||||
|
||||
# Create final response
|
||||
final_response = OpenAIResponseObject(
|
||||
created_at=created_at,
|
||||
id=response_id,
|
||||
model=model,
|
||||
object="response",
|
||||
status="completed",
|
||||
text=text,
|
||||
output=output_messages,
|
||||
)
|
||||
|
||||
# Emit response.completed
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
|
||||
|
||||
if store:
|
||||
await self._store_response(
|
||||
response=final_response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
async def delete_openai_response(self, response_id: str) -> OpenAIDeleteResponseObject:
|
||||
return await self.responses_store.delete_response_object(response_id)
|
||||
|
||||
async def _convert_response_tools_to_chat_tools(
|
||||
self, tools: list[OpenAIResponseInputTool]
|
||||
) -> tuple[
|
||||
list[ChatCompletionToolParam],
|
||||
dict[str, OpenAIResponseInputToolMCP],
|
||||
OpenAIResponseOutput | None,
|
||||
]:
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
MCPListToolsTool,
|
||||
)
|
||||
from llama_stack.apis.tools import Tool
|
||||
|
||||
mcp_tool_to_server = {}
|
||||
|
||||
def make_openai_tool(tool_name: str, tool: Tool) -> ChatCompletionToolParam:
|
||||
tool_def = ToolDefinition(
|
||||
tool_name=tool_name,
|
||||
description=tool.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
default=param.default,
|
||||
)
|
||||
for param in tool.parameters
|
||||
},
|
||||
)
|
||||
return convert_tooldef_to_openai_tool(tool_def)
|
||||
|
||||
mcp_list_message = None
|
||||
chat_tools: list[ChatCompletionToolParam] = []
|
||||
for input_tool in tools:
|
||||
# TODO: Handle other tool types
|
||||
if input_tool.type == "function":
|
||||
chat_tools.append(ChatCompletionToolParam(type="function", function=input_tool.model_dump()))
|
||||
elif input_tool.type in WebSearchToolTypes:
|
||||
tool_name = "web_search"
|
||||
tool = await self.tool_groups_api.get_tool(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
chat_tools.append(make_openai_tool(tool_name, tool))
|
||||
elif input_tool.type == "file_search":
|
||||
tool_name = "knowledge_search"
|
||||
tool = await self.tool_groups_api.get_tool(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
chat_tools.append(make_openai_tool(tool_name, tool))
|
||||
elif input_tool.type == "mcp":
|
||||
from llama_stack.providers.utils.tools.mcp import list_mcp_tools
|
||||
|
||||
always_allowed = None
|
||||
never_allowed = None
|
||||
if input_tool.allowed_tools:
|
||||
if isinstance(input_tool.allowed_tools, list):
|
||||
always_allowed = input_tool.allowed_tools
|
||||
elif isinstance(input_tool.allowed_tools, AllowedToolsFilter):
|
||||
always_allowed = input_tool.allowed_tools.always
|
||||
never_allowed = input_tool.allowed_tools.never
|
||||
|
||||
tool_defs = await list_mcp_tools(
|
||||
endpoint=input_tool.server_url,
|
||||
headers=input_tool.headers or {},
|
||||
)
|
||||
|
||||
mcp_list_message = OpenAIResponseOutputMessageMCPListTools(
|
||||
id=f"mcp_list_{uuid.uuid4()}",
|
||||
status="completed",
|
||||
server_label=input_tool.server_label,
|
||||
tools=[],
|
||||
)
|
||||
for t in tool_defs.data:
|
||||
if never_allowed and t.name in never_allowed:
|
||||
continue
|
||||
if not always_allowed or t.name in always_allowed:
|
||||
chat_tools.append(make_openai_tool(t.name, t))
|
||||
if t.name in mcp_tool_to_server:
|
||||
raise ValueError(f"Duplicate tool name {t.name} found for server {input_tool.server_label}")
|
||||
mcp_tool_to_server[t.name] = input_tool
|
||||
mcp_list_message.tools.append(
|
||||
MCPListToolsTool(
|
||||
name=t.name,
|
||||
description=t.description,
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
p.name: {
|
||||
"type": p.parameter_type,
|
||||
"description": p.description,
|
||||
}
|
||||
for p in t.parameters
|
||||
},
|
||||
"required": [p.name for p in t.parameters if p.required],
|
||||
},
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Llama Stack OpenAI Responses does not yet support tool type: {input_tool.type}")
|
||||
return chat_tools, mcp_tool_to_server, mcp_list_message
|
||||
|
||||
async def _execute_knowledge_search_via_vector_store(
|
||||
self,
|
||||
query: str,
|
||||
response_file_search_tool: OpenAIResponseInputToolFileSearch,
|
||||
) -> ToolInvocationResult:
|
||||
"""Execute knowledge search using vector_stores.search API with filters support."""
|
||||
search_results = []
|
||||
|
||||
# Create search tasks for all vector stores
|
||||
async def search_single_store(vector_store_id):
|
||||
try:
|
||||
search_response = await self.vector_io_api.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
filters=response_file_search_tool.filters,
|
||||
max_num_results=response_file_search_tool.max_num_results,
|
||||
ranking_options=response_file_search_tool.ranking_options,
|
||||
rewrite_query=False,
|
||||
)
|
||||
return search_response.data
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to search vector store {vector_store_id}: {e}")
|
||||
return []
|
||||
|
||||
# Run all searches in parallel using gather
|
||||
search_tasks = [search_single_store(vid) for vid in response_file_search_tool.vector_store_ids]
|
||||
all_results = await asyncio.gather(*search_tasks)
|
||||
|
||||
# Flatten results
|
||||
for results in all_results:
|
||||
search_results.extend(results)
|
||||
|
||||
# Convert search results to tool result format matching memory.py
|
||||
# Format the results as interleaved content similar to memory.py
|
||||
content_items = []
|
||||
content_items.append(
|
||||
TextContentItem(
|
||||
text=f"knowledge_search tool found {len(search_results)} chunks:\nBEGIN of knowledge_search tool results.\n"
|
||||
)
|
||||
)
|
||||
|
||||
for i, result_item in enumerate(search_results):
|
||||
chunk_text = result_item.content[0].text if result_item.content else ""
|
||||
metadata_text = f"document_id: {result_item.file_id}, score: {result_item.score}"
|
||||
if result_item.attributes:
|
||||
metadata_text += f", attributes: {result_item.attributes}"
|
||||
text_content = f"[{i + 1}] {metadata_text}\n{chunk_text}\n"
|
||||
content_items.append(TextContentItem(text=text_content))
|
||||
|
||||
content_items.append(TextContentItem(text="END of knowledge_search tool results.\n"))
|
||||
content_items.append(
|
||||
TextContentItem(
|
||||
text=f'The above results were retrieved to help answer the user\'s query: "{query}". Use them as supporting information only in answering this query.\n',
|
||||
)
|
||||
)
|
||||
|
||||
return ToolInvocationResult(
|
||||
content=content_items,
|
||||
metadata={
|
||||
"document_ids": [r.file_id for r in search_results],
|
||||
"chunks": [r.content[0].text if r.content else "" for r in search_results],
|
||||
"scores": [r.score for r in search_results],
|
||||
},
|
||||
)
|
||||
|
||||
async def _execute_tool_call(
|
||||
self,
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
ctx: ChatCompletionContext,
|
||||
) -> tuple[OpenAIResponseOutput | None, OpenAIMessageParam | None]:
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
tool_call_id = tool_call.id
|
||||
function = tool_call.function
|
||||
tool_kwargs = json.loads(function.arguments) if function.arguments else {}
|
||||
|
||||
if not function or not tool_call_id or not function.name:
|
||||
return None, None
|
||||
|
||||
error_exc = None
|
||||
result = None
|
||||
try:
|
||||
if ctx.mcp_tool_to_server and function.name in ctx.mcp_tool_to_server:
|
||||
from llama_stack.providers.utils.tools.mcp import invoke_mcp_tool
|
||||
|
||||
mcp_tool = ctx.mcp_tool_to_server[function.name]
|
||||
result = await invoke_mcp_tool(
|
||||
endpoint=mcp_tool.server_url,
|
||||
headers=mcp_tool.headers or {},
|
||||
tool_name=function.name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
elif function.name == "knowledge_search":
|
||||
response_file_search_tool = next(
|
||||
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)), None
|
||||
)
|
||||
if response_file_search_tool:
|
||||
# Use vector_stores.search API instead of knowledge_search tool
|
||||
# to support filters and ranking_options
|
||||
query = tool_kwargs.get("query", "")
|
||||
result = await self._execute_knowledge_search_via_vector_store(
|
||||
query=query,
|
||||
response_file_search_tool=response_file_search_tool,
|
||||
)
|
||||
else:
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name=function.name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
except Exception as e:
|
||||
error_exc = e
|
||||
|
||||
if function.name in ctx.mcp_tool_to_server:
|
||||
from llama_stack.apis.agents.openai_responses import OpenAIResponseOutputMessageMCPCall
|
||||
|
||||
message = OpenAIResponseOutputMessageMCPCall(
|
||||
id=tool_call_id,
|
||||
arguments=function.arguments,
|
||||
name=function.name,
|
||||
server_label=ctx.mcp_tool_to_server[function.name].server_label,
|
||||
)
|
||||
if error_exc:
|
||||
message.error = str(error_exc)
|
||||
elif (result.error_code and result.error_code > 0) or result.error_message:
|
||||
message.error = f"Error (code {result.error_code}): {result.error_message}"
|
||||
elif result.content:
|
||||
message.output = interleaved_content_as_str(result.content)
|
||||
else:
|
||||
if function.name == "web_search":
|
||||
message = OpenAIResponseOutputMessageWebSearchToolCall(
|
||||
id=tool_call_id,
|
||||
status="completed",
|
||||
)
|
||||
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
|
||||
message.status = "failed"
|
||||
elif function.name == "knowledge_search":
|
||||
message = OpenAIResponseOutputMessageFileSearchToolCall(
|
||||
id=tool_call_id,
|
||||
queries=[tool_kwargs.get("query", "")],
|
||||
status="completed",
|
||||
)
|
||||
if "document_ids" in result.metadata:
|
||||
message.results = []
|
||||
for i, doc_id in enumerate(result.metadata["document_ids"]):
|
||||
text = result.metadata["chunks"][i] if "chunks" in result.metadata else None
|
||||
score = result.metadata["scores"][i] if "scores" in result.metadata else None
|
||||
message.results.append(
|
||||
{
|
||||
"file_id": doc_id,
|
||||
"filename": doc_id,
|
||||
"text": text,
|
||||
"score": score,
|
||||
}
|
||||
)
|
||||
if error_exc or (result.error_code and result.error_code > 0) or result.error_message:
|
||||
message.status = "failed"
|
||||
else:
|
||||
raise ValueError(f"Unknown tool {function.name} called")
|
||||
|
||||
input_message = None
|
||||
if result and result.content:
|
||||
if isinstance(result.content, str):
|
||||
content = result.content
|
||||
elif isinstance(result.content, list):
|
||||
from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem
|
||||
|
||||
content = []
|
||||
for item in result.content:
|
||||
if isinstance(item, TextContentItem):
|
||||
part = OpenAIChatCompletionContentPartTextParam(text=item.text)
|
||||
elif isinstance(item, ImageContentItem):
|
||||
if item.image.data:
|
||||
url = f"data:image;base64,{item.image.data}"
|
||||
else:
|
||||
url = item.image.url
|
||||
part = OpenAIChatCompletionContentPartImageParam(image_url=OpenAIImageURL(url=url))
|
||||
else:
|
||||
raise ValueError(f"Unknown result content type: {type(item)}")
|
||||
content.append(part)
|
||||
else:
|
||||
raise ValueError(f"Unknown result content type: {type(result.content)}")
|
||||
input_message = OpenAIToolMessageParam(content=content, tool_call_id=tool_call_id)
|
||||
else:
|
||||
text = str(error_exc)
|
||||
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)
|
||||
|
||||
return message, input_message
|
||||
|
||||
|
||||
def _is_function_tool_call(
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
tools: list[OpenAIResponseInputTool],
|
||||
) -> bool:
|
||||
if not tool_call.function:
|
||||
return False
|
||||
for t in tools:
|
||||
if t.type == "function" and t.name == tool_call.function.name:
|
||||
return True
|
||||
return False
|
|
@ -191,7 +191,11 @@ class AgentPersistence:
|
|||
sessions = []
|
||||
for value in values:
|
||||
try:
|
||||
session_info = Session(**json.loads(value))
|
||||
data = json.loads(value)
|
||||
if "turn_id" in data:
|
||||
continue
|
||||
|
||||
session_info = Session(**data)
|
||||
sessions.append(session_info)
|
||||
except Exception as e:
|
||||
log.error(f"Error parsing session info: {e}")
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -0,0 +1,271 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.agents import Order
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
ListOpenAIResponseInputItem,
|
||||
ListOpenAIResponseObject,
|
||||
OpenAIDeleteResponseObject,
|
||||
OpenAIResponseInput,
|
||||
OpenAIResponseInputMessageContentText,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseMessage,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseText,
|
||||
OpenAIResponseTextFormat,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
OpenAISystemMessageParam,
|
||||
)
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.responses.responses_store import ResponsesStore
|
||||
|
||||
from .streaming import StreamingResponseOrchestrator
|
||||
from .tool_executor import ToolExecutor
|
||||
from .types import ChatCompletionContext
|
||||
from .utils import (
|
||||
convert_response_input_to_chat_messages,
|
||||
convert_response_text_to_chat_response_format,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="responses")
|
||||
|
||||
|
||||
class OpenAIResponsePreviousResponseWithInputItems(BaseModel):
|
||||
input_items: ListOpenAIResponseInputItem
|
||||
response: OpenAIResponseObject
|
||||
|
||||
|
||||
class OpenAIResponsesImpl:
|
||||
def __init__(
|
||||
self,
|
||||
inference_api: Inference,
|
||||
tool_groups_api: ToolGroups,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
responses_store: ResponsesStore,
|
||||
vector_io_api: VectorIO, # VectorIO
|
||||
):
|
||||
self.inference_api = inference_api
|
||||
self.tool_groups_api = tool_groups_api
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.responses_store = responses_store
|
||||
self.vector_io_api = vector_io_api
|
||||
self.tool_executor = ToolExecutor(
|
||||
tool_groups_api=tool_groups_api,
|
||||
tool_runtime_api=tool_runtime_api,
|
||||
vector_io_api=vector_io_api,
|
||||
)
|
||||
|
||||
async def _prepend_previous_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
previous_response_id: str | None = None,
|
||||
):
|
||||
if previous_response_id:
|
||||
previous_response_with_input = await self.responses_store.get_response_object(previous_response_id)
|
||||
|
||||
# previous response input items
|
||||
new_input_items = previous_response_with_input.input
|
||||
|
||||
# previous response output items
|
||||
new_input_items.extend(previous_response_with_input.output)
|
||||
|
||||
# new input items from the current request
|
||||
if isinstance(input, str):
|
||||
new_input_items.append(OpenAIResponseMessage(content=input, role="user"))
|
||||
else:
|
||||
new_input_items.extend(input)
|
||||
|
||||
input = new_input_items
|
||||
|
||||
return input
|
||||
|
||||
async def _prepend_instructions(self, messages, instructions):
|
||||
if instructions:
|
||||
messages.insert(0, OpenAISystemMessageParam(content=instructions))
|
||||
|
||||
async def get_openai_response(
|
||||
self,
|
||||
response_id: str,
|
||||
) -> OpenAIResponseObject:
|
||||
response_with_input = await self.responses_store.get_response_object(response_id)
|
||||
return OpenAIResponseObject(**{k: v for k, v in response_with_input.model_dump().items() if k != "input"})
|
||||
|
||||
async def list_openai_responses(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int | None = 50,
|
||||
model: str | None = None,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseObject:
|
||||
return await self.responses_store.list_responses(after, limit, model, order)
|
||||
|
||||
async def list_openai_response_input_items(
|
||||
self,
|
||||
response_id: str,
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
include: list[str] | None = None,
|
||||
limit: int | None = 20,
|
||||
order: Order | None = Order.desc,
|
||||
) -> ListOpenAIResponseInputItem:
|
||||
"""List input items for a given OpenAI response.
|
||||
|
||||
:param response_id: The ID of the response to retrieve input items for.
|
||||
:param after: An item ID to list items after, used for pagination.
|
||||
:param before: An item ID to list items before, used for pagination.
|
||||
:param include: Additional fields to include in the response.
|
||||
:param limit: A limit on the number of objects to be returned.
|
||||
:param order: The order to return the input items in.
|
||||
:returns: An ListOpenAIResponseInputItem.
|
||||
"""
|
||||
return await self.responses_store.list_response_input_items(response_id, after, before, include, limit, order)
|
||||
|
||||
async def _store_response(
|
||||
self,
|
||||
response: OpenAIResponseObject,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
) -> None:
|
||||
new_input_id = f"msg_{uuid.uuid4()}"
|
||||
if isinstance(input, str):
|
||||
# synthesize a message from the input string
|
||||
input_content = OpenAIResponseInputMessageContentText(text=input)
|
||||
input_content_item = OpenAIResponseMessage(
|
||||
role="user",
|
||||
content=[input_content],
|
||||
id=new_input_id,
|
||||
)
|
||||
input_items_data = [input_content_item]
|
||||
else:
|
||||
# we already have a list of messages
|
||||
input_items_data = []
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseMessage):
|
||||
# These may or may not already have an id, so dump to dict, check for id, and add if missing
|
||||
input_item_dict = input_item.model_dump()
|
||||
if "id" not in input_item_dict:
|
||||
input_item_dict["id"] = new_input_id
|
||||
input_items_data.append(OpenAIResponseMessage(**input_item_dict))
|
||||
else:
|
||||
input_items_data.append(input_item)
|
||||
|
||||
await self.responses_store.store_response_object(
|
||||
response_object=response,
|
||||
input=input_items_data,
|
||||
)
|
||||
|
||||
async def create_openai_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
stream: bool | None = False,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
include: list[str] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
):
|
||||
stream = bool(stream)
|
||||
text = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")) if text is None else text
|
||||
|
||||
stream_gen = self._create_streaming_response(
|
||||
input=input,
|
||||
model=model,
|
||||
instructions=instructions,
|
||||
previous_response_id=previous_response_id,
|
||||
store=store,
|
||||
temperature=temperature,
|
||||
text=text,
|
||||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return stream_gen
|
||||
else:
|
||||
response = None
|
||||
async for stream_chunk in stream_gen:
|
||||
if stream_chunk.type == "response.completed":
|
||||
if response is not None:
|
||||
raise ValueError("The response stream completed multiple times! Earlier response: {response}")
|
||||
response = stream_chunk.response
|
||||
# don't leave the generator half complete!
|
||||
|
||||
if response is None:
|
||||
raise ValueError("The response stream never completed")
|
||||
return response
|
||||
|
||||
async def _create_streaming_response(
|
||||
self,
|
||||
input: str | list[OpenAIResponseInput],
|
||||
model: str,
|
||||
instructions: str | None = None,
|
||||
previous_response_id: str | None = None,
|
||||
store: bool | None = True,
|
||||
temperature: float | None = None,
|
||||
text: OpenAIResponseText | None = None,
|
||||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# Input preprocessing
|
||||
input = await self._prepend_previous_response(input, previous_response_id)
|
||||
messages = await convert_response_input_to_chat_messages(input)
|
||||
await self._prepend_instructions(messages, instructions)
|
||||
|
||||
# Structured outputs
|
||||
response_format = await convert_response_text_to_chat_response_format(text)
|
||||
|
||||
ctx = ChatCompletionContext(
|
||||
model=model,
|
||||
messages=messages,
|
||||
response_tools=tools,
|
||||
temperature=temperature,
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
# Create orchestrator and delegate streaming logic
|
||||
response_id = f"resp-{uuid.uuid4()}"
|
||||
created_at = int(time.time())
|
||||
|
||||
orchestrator = StreamingResponseOrchestrator(
|
||||
inference_api=self.inference_api,
|
||||
ctx=ctx,
|
||||
response_id=response_id,
|
||||
created_at=created_at,
|
||||
text=text,
|
||||
max_infer_iters=max_infer_iters,
|
||||
tool_executor=self.tool_executor,
|
||||
)
|
||||
|
||||
# Stream the response
|
||||
final_response = None
|
||||
async for stream_chunk in orchestrator.create_response():
|
||||
if stream_chunk.type == "response.completed":
|
||||
final_response = stream_chunk.response
|
||||
yield stream_chunk
|
||||
|
||||
# Store the response if requested
|
||||
if store and final_response:
|
||||
await self._store_response(
|
||||
response=final_response,
|
||||
input=input,
|
||||
)
|
||||
|
||||
async def delete_openai_response(self, response_id: str) -> OpenAIDeleteResponseObject:
|
||||
return await self.responses_store.delete_response_object(response_id)
|
|
@ -0,0 +1,634 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
AllowedToolsFilter,
|
||||
MCPListToolsTool,
|
||||
OpenAIResponseContentPartOutputText,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseInputToolMCP,
|
||||
OpenAIResponseObject,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseObjectStreamResponseCompleted,
|
||||
OpenAIResponseObjectStreamResponseContentPartAdded,
|
||||
OpenAIResponseObjectStreamResponseContentPartDone,
|
||||
OpenAIResponseObjectStreamResponseCreated,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta,
|
||||
OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone,
|
||||
OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta,
|
||||
OpenAIResponseObjectStreamResponseMcpCallArgumentsDone,
|
||||
OpenAIResponseObjectStreamResponseMcpListToolsCompleted,
|
||||
OpenAIResponseObjectStreamResponseMcpListToolsInProgress,
|
||||
OpenAIResponseObjectStreamResponseOutputItemAdded,
|
||||
OpenAIResponseObjectStreamResponseOutputItemDone,
|
||||
OpenAIResponseObjectStreamResponseOutputTextDelta,
|
||||
OpenAIResponseOutput,
|
||||
OpenAIResponseOutputMessageFunctionToolCall,
|
||||
OpenAIResponseOutputMessageMCPListTools,
|
||||
OpenAIResponseText,
|
||||
WebSearchToolTypes,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChoice,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from .types import ChatCompletionContext, ChatCompletionResult
|
||||
from .utils import convert_chat_choice_to_response_message, is_function_tool_call
|
||||
|
||||
logger = get_logger(name=__name__, category="responses")
|
||||
|
||||
|
||||
class StreamingResponseOrchestrator:
|
||||
def __init__(
|
||||
self,
|
||||
inference_api: Inference,
|
||||
ctx: ChatCompletionContext,
|
||||
response_id: str,
|
||||
created_at: int,
|
||||
text: OpenAIResponseText,
|
||||
max_infer_iters: int,
|
||||
tool_executor, # Will be the tool execution logic from the main class
|
||||
):
|
||||
self.inference_api = inference_api
|
||||
self.ctx = ctx
|
||||
self.response_id = response_id
|
||||
self.created_at = created_at
|
||||
self.text = text
|
||||
self.max_infer_iters = max_infer_iters
|
||||
self.tool_executor = tool_executor
|
||||
self.sequence_number = 0
|
||||
# Store MCP tool mapping that gets built during tool processing
|
||||
self.mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] = {}
|
||||
|
||||
async def create_response(self) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# Initialize output messages
|
||||
output_messages: list[OpenAIResponseOutput] = []
|
||||
# Create initial response and emit response.created immediately
|
||||
initial_response = OpenAIResponseObject(
|
||||
created_at=self.created_at,
|
||||
id=self.response_id,
|
||||
model=self.ctx.model,
|
||||
object="response",
|
||||
status="in_progress",
|
||||
output=output_messages.copy(),
|
||||
text=self.text,
|
||||
)
|
||||
|
||||
yield OpenAIResponseObjectStreamResponseCreated(response=initial_response)
|
||||
|
||||
# Process all tools (including MCP tools) and emit streaming events
|
||||
if self.ctx.response_tools:
|
||||
async for stream_event in self._process_tools(self.ctx.response_tools, output_messages):
|
||||
yield stream_event
|
||||
|
||||
n_iter = 0
|
||||
messages = self.ctx.messages.copy()
|
||||
|
||||
while True:
|
||||
completion_result = await self.inference_api.openai_chat_completion(
|
||||
model=self.ctx.model,
|
||||
messages=messages,
|
||||
tools=self.ctx.chat_tools,
|
||||
stream=True,
|
||||
temperature=self.ctx.temperature,
|
||||
response_format=self.ctx.response_format,
|
||||
)
|
||||
|
||||
# Process streaming chunks and build complete response
|
||||
completion_result_data = None
|
||||
async for stream_event_or_result in self._process_streaming_chunks(completion_result, output_messages):
|
||||
if isinstance(stream_event_or_result, ChatCompletionResult):
|
||||
completion_result_data = stream_event_or_result
|
||||
else:
|
||||
yield stream_event_or_result
|
||||
if not completion_result_data:
|
||||
raise ValueError("Streaming chunk processor failed to return completion data")
|
||||
current_response = self._build_chat_completion(completion_result_data)
|
||||
|
||||
function_tool_calls, non_function_tool_calls, next_turn_messages = self._separate_tool_calls(
|
||||
current_response, messages
|
||||
)
|
||||
|
||||
# Handle choices with no tool calls
|
||||
for choice in current_response.choices:
|
||||
if not (choice.message.tool_calls and self.ctx.response_tools):
|
||||
output_messages.append(await convert_chat_choice_to_response_message(choice))
|
||||
|
||||
# Execute tool calls and coordinate results
|
||||
async for stream_event in self._coordinate_tool_execution(
|
||||
function_tool_calls,
|
||||
non_function_tool_calls,
|
||||
completion_result_data,
|
||||
output_messages,
|
||||
next_turn_messages,
|
||||
):
|
||||
yield stream_event
|
||||
|
||||
if not function_tool_calls and not non_function_tool_calls:
|
||||
break
|
||||
|
||||
if function_tool_calls:
|
||||
logger.info("Exiting inference loop since there is a function (client-side) tool call")
|
||||
break
|
||||
|
||||
n_iter += 1
|
||||
if n_iter >= self.max_infer_iters:
|
||||
logger.info(f"Exiting inference loop since iteration count({n_iter}) exceeds {self.max_infer_iters=}")
|
||||
break
|
||||
|
||||
messages = next_turn_messages
|
||||
|
||||
# Create final response
|
||||
final_response = OpenAIResponseObject(
|
||||
created_at=self.created_at,
|
||||
id=self.response_id,
|
||||
model=self.ctx.model,
|
||||
object="response",
|
||||
status="completed",
|
||||
text=self.text,
|
||||
output=output_messages,
|
||||
)
|
||||
|
||||
# Emit response.completed
|
||||
yield OpenAIResponseObjectStreamResponseCompleted(response=final_response)
|
||||
|
||||
def _separate_tool_calls(self, current_response, messages) -> tuple[list, list, list]:
|
||||
"""Separate tool calls into function and non-function categories."""
|
||||
function_tool_calls = []
|
||||
non_function_tool_calls = []
|
||||
next_turn_messages = messages.copy()
|
||||
|
||||
for choice in current_response.choices:
|
||||
next_turn_messages.append(choice.message)
|
||||
|
||||
if choice.message.tool_calls and self.ctx.response_tools:
|
||||
for tool_call in choice.message.tool_calls:
|
||||
if is_function_tool_call(tool_call, self.ctx.response_tools):
|
||||
function_tool_calls.append(tool_call)
|
||||
else:
|
||||
non_function_tool_calls.append(tool_call)
|
||||
|
||||
return function_tool_calls, non_function_tool_calls, next_turn_messages
|
||||
|
||||
async def _process_streaming_chunks(
|
||||
self, completion_result, output_messages: list[OpenAIResponseOutput]
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream | ChatCompletionResult]:
|
||||
"""Process streaming chunks and emit events, returning completion data."""
|
||||
# Initialize result tracking
|
||||
chat_response_id = ""
|
||||
chat_response_content = []
|
||||
chat_response_tool_calls: dict[int, OpenAIChatCompletionToolCall] = {}
|
||||
chunk_created = 0
|
||||
chunk_model = ""
|
||||
chunk_finish_reason = ""
|
||||
|
||||
# Create a placeholder message item for delta events
|
||||
message_item_id = f"msg_{uuid.uuid4()}"
|
||||
# Track tool call items for streaming events
|
||||
tool_call_item_ids: dict[int, str] = {}
|
||||
# Track content parts for streaming events
|
||||
content_part_emitted = False
|
||||
|
||||
async for chunk in completion_result:
|
||||
chat_response_id = chunk.id
|
||||
chunk_created = chunk.created
|
||||
chunk_model = chunk.model
|
||||
for chunk_choice in chunk.choices:
|
||||
# Emit incremental text content as delta events
|
||||
if chunk_choice.delta.content:
|
||||
# Emit content_part.added event for first text chunk
|
||||
if not content_part_emitted:
|
||||
content_part_emitted = True
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseContentPartAdded(
|
||||
response_id=self.response_id,
|
||||
item_id=message_item_id,
|
||||
part=OpenAIResponseContentPartOutputText(
|
||||
text="", # Will be filled incrementally via text deltas
|
||||
),
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputTextDelta(
|
||||
content_index=0,
|
||||
delta=chunk_choice.delta.content,
|
||||
item_id=message_item_id,
|
||||
output_index=0,
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
# Collect content for final response
|
||||
chat_response_content.append(chunk_choice.delta.content or "")
|
||||
if chunk_choice.finish_reason:
|
||||
chunk_finish_reason = chunk_choice.finish_reason
|
||||
|
||||
# Aggregate tool call arguments across chunks
|
||||
if chunk_choice.delta.tool_calls:
|
||||
for tool_call in chunk_choice.delta.tool_calls:
|
||||
response_tool_call = chat_response_tool_calls.get(tool_call.index, None)
|
||||
# Create new tool call entry if this is the first chunk for this index
|
||||
is_new_tool_call = response_tool_call is None
|
||||
if is_new_tool_call:
|
||||
tool_call_dict: dict[str, Any] = tool_call.model_dump()
|
||||
tool_call_dict.pop("type", None)
|
||||
response_tool_call = OpenAIChatCompletionToolCall(**tool_call_dict)
|
||||
chat_response_tool_calls[tool_call.index] = response_tool_call
|
||||
|
||||
# Create item ID for this tool call for streaming events
|
||||
tool_call_item_id = f"fc_{uuid.uuid4()}"
|
||||
tool_call_item_ids[tool_call.index] = tool_call_item_id
|
||||
|
||||
# Emit output_item.added event for the new function call
|
||||
self.sequence_number += 1
|
||||
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments="", # Will be filled incrementally via delta events
|
||||
call_id=tool_call.id or "",
|
||||
name=tool_call.function.name if tool_call.function else "",
|
||||
id=tool_call_item_id,
|
||||
status="in_progress",
|
||||
)
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
|
||||
response_id=self.response_id,
|
||||
item=function_call_item,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
# Stream tool call arguments as they arrive (differentiate between MCP and function calls)
|
||||
if tool_call.function and tool_call.function.arguments:
|
||||
tool_call_item_id = tool_call_item_ids[tool_call.index]
|
||||
self.sequence_number += 1
|
||||
|
||||
# Check if this is an MCP tool call
|
||||
is_mcp_tool = tool_call.function.name and tool_call.function.name in self.mcp_tool_to_server
|
||||
if is_mcp_tool:
|
||||
# Emit MCP-specific argument delta event
|
||||
yield OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
else:
|
||||
# Emit function call argument delta event
|
||||
yield OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(
|
||||
delta=tool_call.function.arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
# Accumulate arguments for final response (only for subsequent chunks)
|
||||
if not is_new_tool_call:
|
||||
response_tool_call.function.arguments = (
|
||||
response_tool_call.function.arguments or ""
|
||||
) + tool_call.function.arguments
|
||||
|
||||
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
|
||||
for tool_call_index in sorted(chat_response_tool_calls.keys()):
|
||||
tool_call_item_id = tool_call_item_ids[tool_call_index]
|
||||
final_arguments = chat_response_tool_calls[tool_call_index].function.arguments or ""
|
||||
tool_call_name = chat_response_tool_calls[tool_call_index].function.name
|
||||
|
||||
# Check if this is an MCP tool call
|
||||
is_mcp_tool = tool_call_name and tool_call_name in self.mcp_tool_to_server
|
||||
self.sequence_number += 1
|
||||
done_event_cls = (
|
||||
OpenAIResponseObjectStreamResponseMcpCallArgumentsDone
|
||||
if is_mcp_tool
|
||||
else OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone
|
||||
)
|
||||
yield done_event_cls(
|
||||
arguments=final_arguments,
|
||||
item_id=tool_call_item_id,
|
||||
output_index=len(output_messages),
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
# Emit content_part.done event if text content was streamed (before content gets cleared)
|
||||
if content_part_emitted:
|
||||
final_text = "".join(chat_response_content)
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseContentPartDone(
|
||||
response_id=self.response_id,
|
||||
item_id=message_item_id,
|
||||
part=OpenAIResponseContentPartOutputText(
|
||||
text=final_text,
|
||||
),
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
# Clear content when there are tool calls (OpenAI spec behavior)
|
||||
if chat_response_tool_calls:
|
||||
chat_response_content = []
|
||||
|
||||
yield ChatCompletionResult(
|
||||
response_id=chat_response_id,
|
||||
content=chat_response_content,
|
||||
tool_calls=chat_response_tool_calls,
|
||||
created=chunk_created,
|
||||
model=chunk_model,
|
||||
finish_reason=chunk_finish_reason,
|
||||
message_item_id=message_item_id,
|
||||
tool_call_item_ids=tool_call_item_ids,
|
||||
content_part_emitted=content_part_emitted,
|
||||
)
|
||||
|
||||
def _build_chat_completion(self, result: ChatCompletionResult) -> OpenAIChatCompletion:
|
||||
"""Build OpenAIChatCompletion from ChatCompletionResult."""
|
||||
# Convert collected chunks to complete response
|
||||
if result.tool_calls:
|
||||
tool_calls = [result.tool_calls[i] for i in sorted(result.tool_calls.keys())]
|
||||
else:
|
||||
tool_calls = None
|
||||
|
||||
assistant_message = OpenAIAssistantMessageParam(
|
||||
content=result.content_text,
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
return OpenAIChatCompletion(
|
||||
id=result.response_id,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=assistant_message,
|
||||
finish_reason=result.finish_reason,
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=result.created,
|
||||
model=result.model,
|
||||
)
|
||||
|
||||
async def _coordinate_tool_execution(
|
||||
self,
|
||||
function_tool_calls: list,
|
||||
non_function_tool_calls: list,
|
||||
completion_result_data: ChatCompletionResult,
|
||||
output_messages: list[OpenAIResponseOutput],
|
||||
next_turn_messages: list,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Coordinate execution of both function and non-function tool calls."""
|
||||
# Execute non-function tool calls
|
||||
for tool_call in non_function_tool_calls:
|
||||
# Find the item_id for this tool call
|
||||
matching_item_id = None
|
||||
for index, item_id in completion_result_data.tool_call_item_ids.items():
|
||||
response_tool_call = completion_result_data.tool_calls.get(index)
|
||||
if response_tool_call and response_tool_call.id == tool_call.id:
|
||||
matching_item_id = item_id
|
||||
break
|
||||
|
||||
# Use a fallback item_id if not found
|
||||
if not matching_item_id:
|
||||
matching_item_id = f"tc_{uuid.uuid4()}"
|
||||
|
||||
# Execute tool call with streaming
|
||||
tool_call_log = None
|
||||
tool_response_message = None
|
||||
async for result in self.tool_executor.execute_tool_call(
|
||||
tool_call,
|
||||
self.ctx,
|
||||
self.sequence_number,
|
||||
len(output_messages),
|
||||
matching_item_id,
|
||||
self.mcp_tool_to_server,
|
||||
):
|
||||
if result.stream_event:
|
||||
# Forward streaming events
|
||||
self.sequence_number = result.sequence_number
|
||||
yield result.stream_event
|
||||
|
||||
if result.final_output_message is not None:
|
||||
tool_call_log = result.final_output_message
|
||||
tool_response_message = result.final_input_message
|
||||
self.sequence_number = result.sequence_number
|
||||
|
||||
if tool_call_log:
|
||||
output_messages.append(tool_call_log)
|
||||
|
||||
# Emit output_item.done event for completed non-function tool call
|
||||
if matching_item_id:
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemDone(
|
||||
response_id=self.response_id,
|
||||
item=tool_call_log,
|
||||
output_index=len(output_messages) - 1,
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
if tool_response_message:
|
||||
next_turn_messages.append(tool_response_message)
|
||||
|
||||
# Execute function tool calls (client-side)
|
||||
for tool_call in function_tool_calls:
|
||||
# Find the item_id for this tool call from our tracking dictionary
|
||||
matching_item_id = None
|
||||
for index, item_id in completion_result_data.tool_call_item_ids.items():
|
||||
response_tool_call = completion_result_data.tool_calls.get(index)
|
||||
if response_tool_call and response_tool_call.id == tool_call.id:
|
||||
matching_item_id = item_id
|
||||
break
|
||||
|
||||
# Use existing item_id or create new one if not found
|
||||
final_item_id = matching_item_id or f"fc_{uuid.uuid4()}"
|
||||
|
||||
function_call_item = OpenAIResponseOutputMessageFunctionToolCall(
|
||||
arguments=tool_call.function.arguments or "",
|
||||
call_id=tool_call.id,
|
||||
name=tool_call.function.name or "",
|
||||
id=final_item_id,
|
||||
status="completed",
|
||||
)
|
||||
output_messages.append(function_call_item)
|
||||
|
||||
# Emit output_item.done event for completed function call
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemDone(
|
||||
response_id=self.response_id,
|
||||
item=function_call_item,
|
||||
output_index=len(output_messages) - 1,
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
async def _process_tools(
|
||||
self, tools: list[OpenAIResponseInputTool], output_messages: list[OpenAIResponseOutput]
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Process all tools and emit appropriate streaming events."""
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from llama_stack.apis.tools import Tool
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
||||
def make_openai_tool(tool_name: str, tool: Tool) -> ChatCompletionToolParam:
|
||||
tool_def = ToolDefinition(
|
||||
tool_name=tool_name,
|
||||
description=tool.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
default=param.default,
|
||||
)
|
||||
for param in tool.parameters
|
||||
},
|
||||
)
|
||||
return convert_tooldef_to_openai_tool(tool_def)
|
||||
|
||||
# Initialize chat_tools if not already set
|
||||
if self.ctx.chat_tools is None:
|
||||
self.ctx.chat_tools = []
|
||||
|
||||
for input_tool in tools:
|
||||
if input_tool.type == "function":
|
||||
self.ctx.chat_tools.append(ChatCompletionToolParam(type="function", function=input_tool.model_dump()))
|
||||
elif input_tool.type in WebSearchToolTypes:
|
||||
tool_name = "web_search"
|
||||
# Need to access tool_groups_api from tool_executor
|
||||
tool = await self.tool_executor.tool_groups_api.get_tool(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
self.ctx.chat_tools.append(make_openai_tool(tool_name, tool))
|
||||
elif input_tool.type == "file_search":
|
||||
tool_name = "knowledge_search"
|
||||
tool = await self.tool_executor.tool_groups_api.get_tool(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
self.ctx.chat_tools.append(make_openai_tool(tool_name, tool))
|
||||
elif input_tool.type == "mcp":
|
||||
async for stream_event in self._process_mcp_tool(input_tool, output_messages):
|
||||
yield stream_event
|
||||
else:
|
||||
raise ValueError(f"Llama Stack OpenAI Responses does not yet support tool type: {input_tool.type}")
|
||||
|
||||
async def _process_mcp_tool(
|
||||
self, mcp_tool: OpenAIResponseInputToolMCP, output_messages: list[OpenAIResponseOutput]
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Process an MCP tool configuration and emit appropriate streaming events."""
|
||||
from llama_stack.providers.utils.tools.mcp import list_mcp_tools
|
||||
|
||||
# Emit mcp_list_tools.in_progress
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseMcpListToolsInProgress(
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
try:
|
||||
# Parse allowed/never allowed tools
|
||||
always_allowed = None
|
||||
never_allowed = None
|
||||
if mcp_tool.allowed_tools:
|
||||
if isinstance(mcp_tool.allowed_tools, list):
|
||||
always_allowed = mcp_tool.allowed_tools
|
||||
elif isinstance(mcp_tool.allowed_tools, AllowedToolsFilter):
|
||||
always_allowed = mcp_tool.allowed_tools.always
|
||||
never_allowed = mcp_tool.allowed_tools.never
|
||||
|
||||
# Call list_mcp_tools
|
||||
tool_defs = await list_mcp_tools(
|
||||
endpoint=mcp_tool.server_url,
|
||||
headers=mcp_tool.headers or {},
|
||||
)
|
||||
|
||||
# Create the MCP list tools message
|
||||
mcp_list_message = OpenAIResponseOutputMessageMCPListTools(
|
||||
id=f"mcp_list_{uuid.uuid4()}",
|
||||
server_label=mcp_tool.server_label,
|
||||
tools=[],
|
||||
)
|
||||
|
||||
# Process tools and update context
|
||||
for t in tool_defs.data:
|
||||
if never_allowed and t.name in never_allowed:
|
||||
continue
|
||||
if not always_allowed or t.name in always_allowed:
|
||||
# Add to chat tools for inference
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
||||
tool_def = ToolDefinition(
|
||||
tool_name=t.name,
|
||||
description=t.description,
|
||||
parameters={
|
||||
param.name: ToolParamDefinition(
|
||||
param_type=param.parameter_type,
|
||||
description=param.description,
|
||||
required=param.required,
|
||||
default=param.default,
|
||||
)
|
||||
for param in t.parameters
|
||||
},
|
||||
)
|
||||
openai_tool = convert_tooldef_to_openai_tool(tool_def)
|
||||
if self.ctx.chat_tools is None:
|
||||
self.ctx.chat_tools = []
|
||||
self.ctx.chat_tools.append(openai_tool)
|
||||
|
||||
# Add to MCP tool mapping
|
||||
if t.name in self.mcp_tool_to_server:
|
||||
raise ValueError(f"Duplicate tool name {t.name} found for server {mcp_tool.server_label}")
|
||||
self.mcp_tool_to_server[t.name] = mcp_tool
|
||||
|
||||
# Add to MCP list message
|
||||
mcp_list_message.tools.append(
|
||||
MCPListToolsTool(
|
||||
name=t.name,
|
||||
description=t.description,
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
p.name: {
|
||||
"type": p.parameter_type,
|
||||
"description": p.description,
|
||||
}
|
||||
for p in t.parameters
|
||||
},
|
||||
"required": [p.name for p in t.parameters if p.required],
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
# Add the MCP list message to output
|
||||
output_messages.append(mcp_list_message)
|
||||
|
||||
# Emit output_item.added for the MCP list tools message
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemAdded(
|
||||
response_id=self.response_id,
|
||||
item=mcp_list_message,
|
||||
output_index=len(output_messages) - 1,
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
# Emit mcp_list_tools.completed
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseMcpListToolsCompleted(
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
# Emit output_item.done for the MCP list tools message
|
||||
self.sequence_number += 1
|
||||
yield OpenAIResponseObjectStreamResponseOutputItemDone(
|
||||
response_id=self.response_id,
|
||||
item=mcp_list_message,
|
||||
output_index=len(output_messages) - 1,
|
||||
sequence_number=self.sequence_number,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
# TODO: Emit mcp_list_tools.failed event if needed
|
||||
logger.exception(f"Failed to list MCP tools from {mcp_tool.server_url}: {e}")
|
||||
raise
|
|
@ -0,0 +1,379 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseInputToolFileSearch,
|
||||
OpenAIResponseInputToolMCP,
|
||||
OpenAIResponseObjectStreamResponseMcpCallCompleted,
|
||||
OpenAIResponseObjectStreamResponseMcpCallFailed,
|
||||
OpenAIResponseObjectStreamResponseMcpCallInProgress,
|
||||
OpenAIResponseObjectStreamResponseWebSearchCallCompleted,
|
||||
OpenAIResponseObjectStreamResponseWebSearchCallInProgress,
|
||||
OpenAIResponseObjectStreamResponseWebSearchCallSearching,
|
||||
OpenAIResponseOutputMessageFileSearchToolCall,
|
||||
OpenAIResponseOutputMessageFileSearchToolCallResults,
|
||||
OpenAIResponseOutputMessageWebSearchToolCall,
|
||||
)
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIImageURL,
|
||||
OpenAIToolMessageParam,
|
||||
)
|
||||
from llama_stack.apis.tools import ToolGroups, ToolInvocationResult, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.log import get_logger
|
||||
|
||||
from .types import ChatCompletionContext, ToolExecutionResult
|
||||
|
||||
logger = get_logger(name=__name__, category="responses")
|
||||
|
||||
|
||||
class ToolExecutor:
|
||||
def __init__(
|
||||
self,
|
||||
tool_groups_api: ToolGroups,
|
||||
tool_runtime_api: ToolRuntime,
|
||||
vector_io_api: VectorIO,
|
||||
):
|
||||
self.tool_groups_api = tool_groups_api
|
||||
self.tool_runtime_api = tool_runtime_api
|
||||
self.vector_io_api = vector_io_api
|
||||
|
||||
async def execute_tool_call(
|
||||
self,
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
ctx: ChatCompletionContext,
|
||||
sequence_number: int,
|
||||
output_index: int,
|
||||
item_id: str,
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
|
||||
) -> AsyncIterator[ToolExecutionResult]:
|
||||
tool_call_id = tool_call.id
|
||||
function = tool_call.function
|
||||
tool_kwargs = json.loads(function.arguments) if function.arguments else {}
|
||||
|
||||
if not function or not tool_call_id or not function.name:
|
||||
yield ToolExecutionResult(sequence_number=sequence_number)
|
||||
return
|
||||
|
||||
# Emit progress events for tool execution start
|
||||
async for event_result in self._emit_progress_events(
|
||||
function.name, ctx, sequence_number, output_index, item_id, mcp_tool_to_server
|
||||
):
|
||||
sequence_number = event_result.sequence_number
|
||||
yield event_result
|
||||
|
||||
# Execute the actual tool call
|
||||
error_exc, result = await self._execute_tool(function.name, tool_kwargs, ctx, mcp_tool_to_server)
|
||||
|
||||
# Emit completion events for tool execution
|
||||
has_error = error_exc or (result and ((result.error_code and result.error_code > 0) or result.error_message))
|
||||
async for event_result in self._emit_completion_events(
|
||||
function.name, ctx, sequence_number, output_index, item_id, has_error, mcp_tool_to_server
|
||||
):
|
||||
sequence_number = event_result.sequence_number
|
||||
yield event_result
|
||||
|
||||
# Build result messages from tool execution
|
||||
output_message, input_message = await self._build_result_messages(
|
||||
function, tool_call_id, tool_kwargs, ctx, error_exc, result, has_error, mcp_tool_to_server
|
||||
)
|
||||
|
||||
# Yield the final result
|
||||
yield ToolExecutionResult(
|
||||
sequence_number=sequence_number, final_output_message=output_message, final_input_message=input_message
|
||||
)
|
||||
|
||||
async def _execute_knowledge_search_via_vector_store(
|
||||
self,
|
||||
query: str,
|
||||
response_file_search_tool: OpenAIResponseInputToolFileSearch,
|
||||
) -> ToolInvocationResult:
|
||||
"""Execute knowledge search using vector_stores.search API with filters support."""
|
||||
search_results = []
|
||||
|
||||
# Create search tasks for all vector stores
|
||||
async def search_single_store(vector_store_id):
|
||||
try:
|
||||
search_response = await self.vector_io_api.openai_search_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
query=query,
|
||||
filters=response_file_search_tool.filters,
|
||||
max_num_results=response_file_search_tool.max_num_results,
|
||||
ranking_options=response_file_search_tool.ranking_options,
|
||||
rewrite_query=False,
|
||||
)
|
||||
return search_response.data
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to search vector store {vector_store_id}: {e}")
|
||||
return []
|
||||
|
||||
# Run all searches in parallel using gather
|
||||
search_tasks = [search_single_store(vid) for vid in response_file_search_tool.vector_store_ids]
|
||||
all_results = await asyncio.gather(*search_tasks)
|
||||
|
||||
# Flatten results
|
||||
for results in all_results:
|
||||
search_results.extend(results)
|
||||
|
||||
# Convert search results to tool result format matching memory.py
|
||||
# Format the results as interleaved content similar to memory.py
|
||||
content_items = []
|
||||
content_items.append(
|
||||
TextContentItem(
|
||||
text=f"knowledge_search tool found {len(search_results)} chunks:\nBEGIN of knowledge_search tool results.\n"
|
||||
)
|
||||
)
|
||||
|
||||
for i, result_item in enumerate(search_results):
|
||||
chunk_text = result_item.content[0].text if result_item.content else ""
|
||||
metadata_text = f"document_id: {result_item.file_id}, score: {result_item.score}"
|
||||
if result_item.attributes:
|
||||
metadata_text += f", attributes: {result_item.attributes}"
|
||||
text_content = f"[{i + 1}] {metadata_text}\n{chunk_text}\n"
|
||||
content_items.append(TextContentItem(text=text_content))
|
||||
|
||||
content_items.append(TextContentItem(text="END of knowledge_search tool results.\n"))
|
||||
content_items.append(
|
||||
TextContentItem(
|
||||
text=f'The above results were retrieved to help answer the user\'s query: "{query}". Use them as supporting information only in answering this query.\n',
|
||||
)
|
||||
)
|
||||
|
||||
return ToolInvocationResult(
|
||||
content=content_items,
|
||||
metadata={
|
||||
"document_ids": [r.file_id for r in search_results],
|
||||
"chunks": [r.content[0].text if r.content else "" for r in search_results],
|
||||
"scores": [r.score for r in search_results],
|
||||
},
|
||||
)
|
||||
|
||||
async def _emit_progress_events(
|
||||
self,
|
||||
function_name: str,
|
||||
ctx: ChatCompletionContext,
|
||||
sequence_number: int,
|
||||
output_index: int,
|
||||
item_id: str,
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
|
||||
) -> AsyncIterator[ToolExecutionResult]:
|
||||
"""Emit progress events for tool execution start."""
|
||||
# Emit in_progress event based on tool type (only for tools with specific streaming events)
|
||||
progress_event = None
|
||||
if mcp_tool_to_server and function_name in mcp_tool_to_server:
|
||||
sequence_number += 1
|
||||
progress_event = OpenAIResponseObjectStreamResponseMcpCallInProgress(
|
||||
item_id=item_id,
|
||||
output_index=output_index,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
elif function_name == "web_search":
|
||||
sequence_number += 1
|
||||
progress_event = OpenAIResponseObjectStreamResponseWebSearchCallInProgress(
|
||||
item_id=item_id,
|
||||
output_index=output_index,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
# Note: knowledge_search and other custom tools don't have specific streaming events in OpenAI spec
|
||||
|
||||
if progress_event:
|
||||
yield ToolExecutionResult(stream_event=progress_event, sequence_number=sequence_number)
|
||||
|
||||
# For web search, emit searching event
|
||||
if function_name == "web_search":
|
||||
sequence_number += 1
|
||||
searching_event = OpenAIResponseObjectStreamResponseWebSearchCallSearching(
|
||||
item_id=item_id,
|
||||
output_index=output_index,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
yield ToolExecutionResult(stream_event=searching_event, sequence_number=sequence_number)
|
||||
|
||||
async def _execute_tool(
|
||||
self,
|
||||
function_name: str,
|
||||
tool_kwargs: dict,
|
||||
ctx: ChatCompletionContext,
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
|
||||
) -> tuple[Exception | None, any]:
|
||||
"""Execute the tool and return error exception and result."""
|
||||
error_exc = None
|
||||
result = None
|
||||
|
||||
try:
|
||||
if mcp_tool_to_server and function_name in mcp_tool_to_server:
|
||||
from llama_stack.providers.utils.tools.mcp import invoke_mcp_tool
|
||||
|
||||
mcp_tool = mcp_tool_to_server[function_name]
|
||||
result = await invoke_mcp_tool(
|
||||
endpoint=mcp_tool.server_url,
|
||||
headers=mcp_tool.headers or {},
|
||||
tool_name=function_name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
elif function_name == "knowledge_search":
|
||||
response_file_search_tool = next(
|
||||
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
|
||||
None,
|
||||
)
|
||||
if response_file_search_tool:
|
||||
# Use vector_stores.search API instead of knowledge_search tool
|
||||
# to support filters and ranking_options
|
||||
query = tool_kwargs.get("query", "")
|
||||
result = await self._execute_knowledge_search_via_vector_store(
|
||||
query=query,
|
||||
response_file_search_tool=response_file_search_tool,
|
||||
)
|
||||
else:
|
||||
result = await self.tool_runtime_api.invoke_tool(
|
||||
tool_name=function_name,
|
||||
kwargs=tool_kwargs,
|
||||
)
|
||||
except Exception as e:
|
||||
error_exc = e
|
||||
|
||||
return error_exc, result
|
||||
|
||||
async def _emit_completion_events(
|
||||
self,
|
||||
function_name: str,
|
||||
ctx: ChatCompletionContext,
|
||||
sequence_number: int,
|
||||
output_index: int,
|
||||
item_id: str,
|
||||
has_error: bool,
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
|
||||
) -> AsyncIterator[ToolExecutionResult]:
|
||||
"""Emit completion or failure events for tool execution."""
|
||||
completion_event = None
|
||||
|
||||
if mcp_tool_to_server and function_name in mcp_tool_to_server:
|
||||
sequence_number += 1
|
||||
if has_error:
|
||||
completion_event = OpenAIResponseObjectStreamResponseMcpCallFailed(
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
else:
|
||||
completion_event = OpenAIResponseObjectStreamResponseMcpCallCompleted(
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
elif function_name == "web_search":
|
||||
sequence_number += 1
|
||||
completion_event = OpenAIResponseObjectStreamResponseWebSearchCallCompleted(
|
||||
item_id=item_id,
|
||||
output_index=output_index,
|
||||
sequence_number=sequence_number,
|
||||
)
|
||||
# Note: knowledge_search and other custom tools don't have specific completion events in OpenAI spec
|
||||
|
||||
if completion_event:
|
||||
yield ToolExecutionResult(stream_event=completion_event, sequence_number=sequence_number)
|
||||
|
||||
async def _build_result_messages(
|
||||
self,
|
||||
function,
|
||||
tool_call_id: str,
|
||||
tool_kwargs: dict,
|
||||
ctx: ChatCompletionContext,
|
||||
error_exc: Exception | None,
|
||||
result: any,
|
||||
has_error: bool,
|
||||
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
|
||||
) -> tuple[any, any]:
|
||||
"""Build output and input messages from tool execution results."""
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
# Build output message
|
||||
if mcp_tool_to_server and function.name in mcp_tool_to_server:
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseOutputMessageMCPCall,
|
||||
)
|
||||
|
||||
message = OpenAIResponseOutputMessageMCPCall(
|
||||
id=tool_call_id,
|
||||
arguments=function.arguments,
|
||||
name=function.name,
|
||||
server_label=mcp_tool_to_server[function.name].server_label,
|
||||
)
|
||||
if error_exc:
|
||||
message.error = str(error_exc)
|
||||
elif (result and result.error_code and result.error_code > 0) or (result and result.error_message):
|
||||
message.error = f"Error (code {result.error_code}): {result.error_message}"
|
||||
elif result and result.content:
|
||||
message.output = interleaved_content_as_str(result.content)
|
||||
else:
|
||||
if function.name == "web_search":
|
||||
message = OpenAIResponseOutputMessageWebSearchToolCall(
|
||||
id=tool_call_id,
|
||||
status="completed",
|
||||
)
|
||||
if has_error:
|
||||
message.status = "failed"
|
||||
elif function.name == "knowledge_search":
|
||||
message = OpenAIResponseOutputMessageFileSearchToolCall(
|
||||
id=tool_call_id,
|
||||
queries=[tool_kwargs.get("query", "")],
|
||||
status="completed",
|
||||
)
|
||||
if result and "document_ids" in result.metadata:
|
||||
message.results = []
|
||||
for i, doc_id in enumerate(result.metadata["document_ids"]):
|
||||
text = result.metadata["chunks"][i] if "chunks" in result.metadata else None
|
||||
score = result.metadata["scores"][i] if "scores" in result.metadata else None
|
||||
message.results.append(
|
||||
OpenAIResponseOutputMessageFileSearchToolCallResults(
|
||||
file_id=doc_id,
|
||||
filename=doc_id,
|
||||
text=text,
|
||||
score=score,
|
||||
attributes={},
|
||||
)
|
||||
)
|
||||
if has_error:
|
||||
message.status = "failed"
|
||||
else:
|
||||
raise ValueError(f"Unknown tool {function.name} called")
|
||||
|
||||
# Build input message
|
||||
input_message = None
|
||||
if result and result.content:
|
||||
if isinstance(result.content, str):
|
||||
content = result.content
|
||||
elif isinstance(result.content, list):
|
||||
content = []
|
||||
for item in result.content:
|
||||
if isinstance(item, TextContentItem):
|
||||
part = OpenAIChatCompletionContentPartTextParam(text=item.text)
|
||||
elif isinstance(item, ImageContentItem):
|
||||
if item.image.data:
|
||||
url = f"data:image;base64,{item.image.data}"
|
||||
else:
|
||||
url = item.image.url
|
||||
part = OpenAIChatCompletionContentPartImageParam(image_url=OpenAIImageURL(url=url))
|
||||
else:
|
||||
raise ValueError(f"Unknown result content type: {type(item)}")
|
||||
content.append(part)
|
||||
else:
|
||||
raise ValueError(f"Unknown result content type: {type(result.content)}")
|
||||
input_message = OpenAIToolMessageParam(content=content, tool_call_id=tool_call_id)
|
||||
else:
|
||||
text = str(error_exc) if error_exc else "Tool execution failed"
|
||||
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)
|
||||
|
||||
return message, input_message
|
|
@ -0,0 +1,60 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseObjectStream,
|
||||
OpenAIResponseOutput,
|
||||
)
|
||||
from llama_stack.apis.inference import OpenAIChatCompletionToolCall, OpenAIMessageParam, OpenAIResponseFormatParam
|
||||
|
||||
|
||||
class ToolExecutionResult(BaseModel):
|
||||
"""Result of streaming tool execution."""
|
||||
|
||||
stream_event: OpenAIResponseObjectStream | None = None
|
||||
sequence_number: int
|
||||
final_output_message: OpenAIResponseOutput | None = None
|
||||
final_input_message: OpenAIMessageParam | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChatCompletionResult:
|
||||
"""Result of processing streaming chat completion chunks."""
|
||||
|
||||
response_id: str
|
||||
content: list[str]
|
||||
tool_calls: dict[int, OpenAIChatCompletionToolCall]
|
||||
created: int
|
||||
model: str
|
||||
finish_reason: str
|
||||
message_item_id: str # For streaming events
|
||||
tool_call_item_ids: dict[int, str] # For streaming events
|
||||
content_part_emitted: bool # Tracking state
|
||||
|
||||
@property
|
||||
def content_text(self) -> str:
|
||||
"""Get joined content as string."""
|
||||
return "".join(self.content)
|
||||
|
||||
@property
|
||||
def has_tool_calls(self) -> bool:
|
||||
"""Check if there are any tool calls."""
|
||||
return bool(self.tool_calls)
|
||||
|
||||
|
||||
class ChatCompletionContext(BaseModel):
|
||||
model: str
|
||||
messages: list[OpenAIMessageParam]
|
||||
response_tools: list[OpenAIResponseInputTool] | None = None
|
||||
chat_tools: list[ChatCompletionToolParam] | None = None
|
||||
temperature: float | None
|
||||
response_format: OpenAIResponseFormatParam
|
|
@ -0,0 +1,169 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
|
||||
from llama_stack.apis.agents.openai_responses import (
|
||||
OpenAIResponseInput,
|
||||
OpenAIResponseInputFunctionToolCallOutput,
|
||||
OpenAIResponseInputMessageContent,
|
||||
OpenAIResponseInputMessageContentImage,
|
||||
OpenAIResponseInputMessageContentText,
|
||||
OpenAIResponseInputTool,
|
||||
OpenAIResponseMessage,
|
||||
OpenAIResponseOutputMessageContent,
|
||||
OpenAIResponseOutputMessageContentOutputText,
|
||||
OpenAIResponseOutputMessageFunctionToolCall,
|
||||
OpenAIResponseText,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoice,
|
||||
OpenAIDeveloperMessageParam,
|
||||
OpenAIImageURL,
|
||||
OpenAIJSONSchema,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatJSONObject,
|
||||
OpenAIResponseFormatJSONSchema,
|
||||
OpenAIResponseFormatParam,
|
||||
OpenAIResponseFormatText,
|
||||
OpenAISystemMessageParam,
|
||||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
)
|
||||
|
||||
|
||||
async def convert_chat_choice_to_response_message(choice: OpenAIChoice) -> OpenAIResponseMessage:
|
||||
"""Convert an OpenAI Chat Completion choice into an OpenAI Response output message."""
|
||||
output_content = ""
|
||||
if isinstance(choice.message.content, str):
|
||||
output_content = choice.message.content
|
||||
elif isinstance(choice.message.content, OpenAIChatCompletionContentPartTextParam):
|
||||
output_content = choice.message.content.text
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Llama Stack OpenAI Responses does not yet support output content type: {type(choice.message.content)}"
|
||||
)
|
||||
|
||||
return OpenAIResponseMessage(
|
||||
id=f"msg_{uuid.uuid4()}",
|
||||
content=[OpenAIResponseOutputMessageContentOutputText(text=output_content)],
|
||||
status="completed",
|
||||
role="assistant",
|
||||
)
|
||||
|
||||
|
||||
async def convert_response_content_to_chat_content(
|
||||
content: (str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent]),
|
||||
) -> str | list[OpenAIChatCompletionContentPartParam]:
|
||||
"""
|
||||
Convert the content parts from an OpenAI Response API request into OpenAI Chat Completion content parts.
|
||||
|
||||
The content schemas of each API look similar, but are not exactly the same.
|
||||
"""
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
|
||||
converted_parts = []
|
||||
for content_part in content:
|
||||
if isinstance(content_part, OpenAIResponseInputMessageContentText):
|
||||
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part.text))
|
||||
elif isinstance(content_part, OpenAIResponseOutputMessageContentOutputText):
|
||||
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part.text))
|
||||
elif isinstance(content_part, OpenAIResponseInputMessageContentImage):
|
||||
if content_part.image_url:
|
||||
image_url = OpenAIImageURL(url=content_part.image_url, detail=content_part.detail)
|
||||
converted_parts.append(OpenAIChatCompletionContentPartImageParam(image_url=image_url))
|
||||
elif isinstance(content_part, str):
|
||||
converted_parts.append(OpenAIChatCompletionContentPartTextParam(text=content_part))
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Llama Stack OpenAI Responses does not yet support content type '{type(content_part)}' in this context"
|
||||
)
|
||||
return converted_parts
|
||||
|
||||
|
||||
async def convert_response_input_to_chat_messages(
|
||||
input: str | list[OpenAIResponseInput],
|
||||
) -> list[OpenAIMessageParam]:
|
||||
"""
|
||||
Convert the input from an OpenAI Response API request into OpenAI Chat Completion messages.
|
||||
"""
|
||||
messages: list[OpenAIMessageParam] = []
|
||||
if isinstance(input, list):
|
||||
for input_item in input:
|
||||
if isinstance(input_item, OpenAIResponseInputFunctionToolCallOutput):
|
||||
messages.append(
|
||||
OpenAIToolMessageParam(
|
||||
content=input_item.output,
|
||||
tool_call_id=input_item.call_id,
|
||||
)
|
||||
)
|
||||
elif isinstance(input_item, OpenAIResponseOutputMessageFunctionToolCall):
|
||||
tool_call = OpenAIChatCompletionToolCall(
|
||||
index=0,
|
||||
id=input_item.call_id,
|
||||
function=OpenAIChatCompletionToolCallFunction(
|
||||
name=input_item.name,
|
||||
arguments=input_item.arguments,
|
||||
),
|
||||
)
|
||||
messages.append(OpenAIAssistantMessageParam(tool_calls=[tool_call]))
|
||||
else:
|
||||
content = await convert_response_content_to_chat_content(input_item.content)
|
||||
message_type = await get_message_type_by_role(input_item.role)
|
||||
if message_type is None:
|
||||
raise ValueError(
|
||||
f"Llama Stack OpenAI Responses does not yet support message role '{input_item.role}' in this context"
|
||||
)
|
||||
messages.append(message_type(content=content))
|
||||
else:
|
||||
messages.append(OpenAIUserMessageParam(content=input))
|
||||
return messages
|
||||
|
||||
|
||||
async def convert_response_text_to_chat_response_format(
|
||||
text: OpenAIResponseText,
|
||||
) -> OpenAIResponseFormatParam:
|
||||
"""
|
||||
Convert an OpenAI Response text parameter into an OpenAI Chat Completion response format.
|
||||
"""
|
||||
if not text.format or text.format["type"] == "text":
|
||||
return OpenAIResponseFormatText(type="text")
|
||||
if text.format["type"] == "json_object":
|
||||
return OpenAIResponseFormatJSONObject()
|
||||
if text.format["type"] == "json_schema":
|
||||
return OpenAIResponseFormatJSONSchema(
|
||||
json_schema=OpenAIJSONSchema(name=text.format["name"], schema=text.format["schema"])
|
||||
)
|
||||
raise ValueError(f"Unsupported text format: {text.format}")
|
||||
|
||||
|
||||
async def get_message_type_by_role(role: str):
|
||||
role_to_type = {
|
||||
"user": OpenAIUserMessageParam,
|
||||
"system": OpenAISystemMessageParam,
|
||||
"assistant": OpenAIAssistantMessageParam,
|
||||
"developer": OpenAIDeveloperMessageParam,
|
||||
}
|
||||
return role_to_type.get(role)
|
||||
|
||||
|
||||
def is_function_tool_call(
|
||||
tool_call: OpenAIChatCompletionToolCall,
|
||||
tools: list[OpenAIResponseInputTool],
|
||||
) -> bool:
|
||||
if not tool_call.function:
|
||||
return False
|
||||
for t in tools:
|
||||
if t.type == "function" and t.name == tool_call.function.name:
|
||||
return True
|
||||
return False
|
5
llama_stack/providers/inline/batches/__init__.py
Normal file
5
llama_stack/providers/inline/batches/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
36
llama_stack/providers/inline/batches/reference/__init__.py
Normal file
36
llama_stack/providers/inline/batches/reference/__init__.py
Normal file
|
@ -0,0 +1,36 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.models import Models
|
||||
from llama_stack.core.datatypes import AccessRule, Api
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
||||
from .batches import ReferenceBatchesImpl
|
||||
from .config import ReferenceBatchesImplConfig
|
||||
|
||||
__all__ = ["ReferenceBatchesImpl", "ReferenceBatchesImplConfig"]
|
||||
|
||||
|
||||
async def get_provider_impl(config: ReferenceBatchesImplConfig, deps: dict[Api, Any], policy: list[AccessRule]):
|
||||
kvstore = await kvstore_impl(config.kvstore)
|
||||
inference_api: Inference | None = deps.get(Api.inference)
|
||||
files_api: Files | None = deps.get(Api.files)
|
||||
models_api: Models | None = deps.get(Api.models)
|
||||
|
||||
if inference_api is None:
|
||||
raise ValueError("Inference API is required but not provided in dependencies")
|
||||
if files_api is None:
|
||||
raise ValueError("Files API is required but not provided in dependencies")
|
||||
if models_api is None:
|
||||
raise ValueError("Models API is required but not provided in dependencies")
|
||||
|
||||
impl = ReferenceBatchesImpl(config, inference_api, files_api, models_api, kvstore)
|
||||
await impl.initialize()
|
||||
return impl
|
580
llama_stack/providers/inline/batches/reference/batches.py
Normal file
580
llama_stack/providers/inline/batches/reference/batches.py
Normal file
|
@ -0,0 +1,580 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import itertools
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
from io import BytesIO
|
||||
from typing import Any, Literal
|
||||
|
||||
from openai.types.batch import BatchError, Errors
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.batches import Batches, BatchObject, ListBatchesResponse
|
||||
from llama_stack.apis.common.errors import ConflictError, ResourceNotFoundError
|
||||
from llama_stack.apis.files import Files, OpenAIFilePurpose
|
||||
from llama_stack.apis.inference import (
|
||||
Inference,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIDeveloperMessageParam,
|
||||
OpenAIMessageParam,
|
||||
OpenAISystemMessageParam,
|
||||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
)
|
||||
from llama_stack.apis.models import Models
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
|
||||
from .config import ReferenceBatchesImplConfig
|
||||
|
||||
BATCH_PREFIX = "batch:"
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class AsyncBytesIO:
|
||||
"""
|
||||
Async-compatible BytesIO wrapper to allow async file-like operations.
|
||||
|
||||
We use this when uploading files to the Files API, as it expects an
|
||||
async file-like object.
|
||||
"""
|
||||
|
||||
def __init__(self, data: bytes):
|
||||
self._buffer = BytesIO(data)
|
||||
|
||||
async def read(self, n=-1):
|
||||
return self._buffer.read(n)
|
||||
|
||||
async def seek(self, pos, whence=0):
|
||||
return self._buffer.seek(pos, whence)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self._buffer.close()
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self._buffer, name)
|
||||
|
||||
|
||||
class BatchRequest(BaseModel):
|
||||
line_num: int
|
||||
custom_id: str
|
||||
method: str
|
||||
url: str
|
||||
body: dict[str, Any]
|
||||
|
||||
|
||||
def convert_to_openai_message_param(msg: dict[str, Any]) -> OpenAIMessageParam:
|
||||
"""Convert a message dictionary to OpenAIMessageParam based on role."""
|
||||
role = msg.get("role")
|
||||
|
||||
if role == "user":
|
||||
return OpenAIUserMessageParam(**msg)
|
||||
elif role == "system":
|
||||
return OpenAISystemMessageParam(**msg)
|
||||
elif role == "assistant":
|
||||
return OpenAIAssistantMessageParam(**msg)
|
||||
elif role == "tool":
|
||||
return OpenAIToolMessageParam(**msg)
|
||||
elif role == "developer":
|
||||
return OpenAIDeveloperMessageParam(**msg)
|
||||
else:
|
||||
raise ValueError(f"Unknown message role: {role}")
|
||||
|
||||
|
||||
class ReferenceBatchesImpl(Batches):
|
||||
"""Reference implementation of the Batches API.
|
||||
|
||||
This implementation processes batch files by making individual requests
|
||||
to the inference API and generates output files with results.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ReferenceBatchesImplConfig,
|
||||
inference_api: Inference,
|
||||
files_api: Files,
|
||||
models_api: Models,
|
||||
kvstore: KVStore,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.kvstore = kvstore
|
||||
self.inference_api = inference_api
|
||||
self.files_api = files_api
|
||||
self.models_api = models_api
|
||||
self._processing_tasks: dict[str, asyncio.Task] = {}
|
||||
self._batch_semaphore = asyncio.Semaphore(config.max_concurrent_batches)
|
||||
self._update_batch_lock = asyncio.Lock()
|
||||
|
||||
# this is to allow tests to disable background processing
|
||||
self.process_batches = True
|
||||
|
||||
async def initialize(self) -> None:
|
||||
# TODO: start background processing of existing tasks
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
"""Shutdown the batches provider."""
|
||||
if self._processing_tasks:
|
||||
# don't cancel tasks - just let them stop naturally on shutdown
|
||||
# cancelling would mark batches as "cancelled" in the database
|
||||
logger.info(f"Shutdown initiated with {len(self._processing_tasks)} active batch processing tasks")
|
||||
|
||||
# TODO (SECURITY): this currently works w/ configured api keys, not with x-llamastack-provider-data or with user policy restrictions
|
||||
async def create_batch(
|
||||
self,
|
||||
input_file_id: str,
|
||||
endpoint: str,
|
||||
completion_window: Literal["24h"],
|
||||
metadata: dict[str, str] | None = None,
|
||||
) -> BatchObject:
|
||||
"""
|
||||
Create a new batch for processing multiple API requests.
|
||||
|
||||
Error handling by levels -
|
||||
0. Input param handling, results in 40x errors before processing, e.g.
|
||||
- Wrong completion_window
|
||||
- Invalid metadata types
|
||||
- Unknown endpoint
|
||||
-> no batch created
|
||||
1. Errors preventing processing, result in BatchErrors aggregated in process_batch, e.g.
|
||||
- input_file_id missing
|
||||
- invalid json in file
|
||||
- missing custom_id, method, url, body
|
||||
- invalid model
|
||||
- streaming
|
||||
-> batch created, validation sends to failed status
|
||||
2. Processing errors, result in error_file_id entries, e.g.
|
||||
- Any error returned from inference endpoint
|
||||
-> batch created, goes to completed status
|
||||
"""
|
||||
|
||||
# TODO: set expiration time for garbage collection
|
||||
|
||||
if endpoint not in ["/v1/chat/completions"]:
|
||||
raise ValueError(
|
||||
f"Invalid endpoint: {endpoint}. Supported values: /v1/chat/completions. Code: invalid_value. Param: endpoint",
|
||||
)
|
||||
|
||||
if completion_window != "24h":
|
||||
raise ValueError(
|
||||
f"Invalid completion_window: {completion_window}. Supported values are: 24h. Code: invalid_value. Param: completion_window",
|
||||
)
|
||||
|
||||
batch_id = f"batch_{uuid.uuid4().hex[:16]}"
|
||||
current_time = int(time.time())
|
||||
|
||||
batch = BatchObject(
|
||||
id=batch_id,
|
||||
object="batch",
|
||||
endpoint=endpoint,
|
||||
input_file_id=input_file_id,
|
||||
completion_window=completion_window,
|
||||
status="validating",
|
||||
created_at=current_time,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
await self.kvstore.set(f"batch:{batch_id}", batch.to_json())
|
||||
|
||||
if self.process_batches:
|
||||
task = asyncio.create_task(self._process_batch(batch_id))
|
||||
self._processing_tasks[batch_id] = task
|
||||
|
||||
return batch
|
||||
|
||||
async def cancel_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Cancel a batch that is in progress."""
|
||||
batch = await self.retrieve_batch(batch_id)
|
||||
|
||||
if batch.status in ["cancelled", "cancelling"]:
|
||||
return batch
|
||||
|
||||
if batch.status in ["completed", "failed", "expired"]:
|
||||
raise ConflictError(f"Cannot cancel batch '{batch_id}' with status '{batch.status}'")
|
||||
|
||||
await self._update_batch(batch_id, status="cancelling", cancelling_at=int(time.time()))
|
||||
|
||||
if batch_id in self._processing_tasks:
|
||||
self._processing_tasks[batch_id].cancel()
|
||||
# note: task removal and status="cancelled" handled in finally block of _process_batch
|
||||
|
||||
return await self.retrieve_batch(batch_id)
|
||||
|
||||
async def list_batches(
|
||||
self,
|
||||
after: str | None = None,
|
||||
limit: int = 20,
|
||||
) -> ListBatchesResponse:
|
||||
"""
|
||||
List all batches, eventually only for the current user.
|
||||
|
||||
With no notion of user, we return all batches.
|
||||
"""
|
||||
batch_values = await self.kvstore.values_in_range("batch:", "batch:\xff")
|
||||
|
||||
batches = []
|
||||
for batch_data in batch_values:
|
||||
if batch_data:
|
||||
batches.append(BatchObject.model_validate_json(batch_data))
|
||||
|
||||
batches.sort(key=lambda b: b.created_at, reverse=True)
|
||||
|
||||
start_idx = 0
|
||||
if after:
|
||||
for i, batch in enumerate(batches):
|
||||
if batch.id == after:
|
||||
start_idx = i + 1
|
||||
break
|
||||
|
||||
page_batches = batches[start_idx : start_idx + limit]
|
||||
has_more = (start_idx + limit) < len(batches)
|
||||
|
||||
first_id = page_batches[0].id if page_batches else None
|
||||
last_id = page_batches[-1].id if page_batches else None
|
||||
|
||||
return ListBatchesResponse(
|
||||
data=page_batches,
|
||||
first_id=first_id,
|
||||
last_id=last_id,
|
||||
has_more=has_more,
|
||||
)
|
||||
|
||||
async def retrieve_batch(self, batch_id: str) -> BatchObject:
|
||||
"""Retrieve information about a specific batch."""
|
||||
batch_data = await self.kvstore.get(f"batch:{batch_id}")
|
||||
if not batch_data:
|
||||
raise ResourceNotFoundError(batch_id, "Batch", "batches.list()")
|
||||
|
||||
return BatchObject.model_validate_json(batch_data)
|
||||
|
||||
async def _update_batch(self, batch_id: str, **updates) -> None:
|
||||
"""Update batch fields in kvstore."""
|
||||
async with self._update_batch_lock:
|
||||
try:
|
||||
batch = await self.retrieve_batch(batch_id)
|
||||
|
||||
# batch processing is async. once cancelling, only allow "cancelled" status updates
|
||||
if batch.status == "cancelling" and updates.get("status") != "cancelled":
|
||||
logger.info(
|
||||
f"Skipping status update for cancelled batch {batch_id}: attempted {updates.get('status')}"
|
||||
)
|
||||
return
|
||||
|
||||
if "errors" in updates:
|
||||
updates["errors"] = updates["errors"].model_dump()
|
||||
|
||||
batch_dict = batch.model_dump()
|
||||
batch_dict.update(updates)
|
||||
|
||||
await self.kvstore.set(f"batch:{batch_id}", json.dumps(batch_dict))
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update batch {batch_id}: {e}")
|
||||
|
||||
async def _validate_input(self, batch: BatchObject) -> tuple[list[BatchError], list[BatchRequest]]:
|
||||
"""
|
||||
Read & validate input, return errors and valid input.
|
||||
|
||||
Validation of
|
||||
- input_file_id existance
|
||||
- valid json
|
||||
- custom_id, method, url, body presence and valid
|
||||
- no streaming
|
||||
"""
|
||||
requests: list[BatchRequest] = []
|
||||
errors: list[BatchError] = []
|
||||
try:
|
||||
await self.files_api.openai_retrieve_file(batch.input_file_id)
|
||||
except Exception:
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="invalid_request",
|
||||
line=None,
|
||||
message=f"Cannot find file {batch.input_file_id}.",
|
||||
param="input_file_id",
|
||||
)
|
||||
)
|
||||
return errors, requests
|
||||
|
||||
# TODO(SECURITY): do something about large files
|
||||
file_content_response = await self.files_api.openai_retrieve_file_content(batch.input_file_id)
|
||||
file_content = file_content_response.body.decode("utf-8")
|
||||
for line_num, line in enumerate(file_content.strip().split("\n"), 1):
|
||||
if line.strip(): # skip empty lines
|
||||
try:
|
||||
request = json.loads(line)
|
||||
|
||||
if not isinstance(request, dict):
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="invalid_request",
|
||||
line=line_num,
|
||||
message="Each line must be a JSON dictionary object",
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
valid = True
|
||||
|
||||
for param, expected_type, type_string in [
|
||||
("custom_id", str, "string"),
|
||||
("method", str, "string"),
|
||||
("url", str, "string"),
|
||||
("body", dict, "JSON dictionary object"),
|
||||
]:
|
||||
if param not in request:
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="missing_required_parameter",
|
||||
line=line_num,
|
||||
message=f"Missing required parameter: {param}",
|
||||
param=param,
|
||||
)
|
||||
)
|
||||
valid = False
|
||||
elif not isinstance(request[param], expected_type):
|
||||
param_name = "URL" if param == "url" else param.capitalize()
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="invalid_request",
|
||||
line=line_num,
|
||||
message=f"{param_name} must be a {type_string}",
|
||||
param=param,
|
||||
)
|
||||
)
|
||||
valid = False
|
||||
|
||||
if (url := request.get("url")) and isinstance(url, str) and url != batch.endpoint:
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="invalid_url",
|
||||
line=line_num,
|
||||
message="URL provided for this request does not match the batch endpoint",
|
||||
param="url",
|
||||
)
|
||||
)
|
||||
valid = False
|
||||
|
||||
if (body := request.get("body")) and isinstance(body, dict):
|
||||
if body.get("stream", False):
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="streaming_unsupported",
|
||||
line=line_num,
|
||||
message="Streaming is not supported in batch processing",
|
||||
param="body.stream",
|
||||
)
|
||||
)
|
||||
valid = False
|
||||
|
||||
for param, expected_type, type_string in [
|
||||
("model", str, "a string"),
|
||||
# messages is specific to /v1/chat/completions
|
||||
# we could skip validating messages here and let inference fail. however,
|
||||
# that would be a very expensive way to find out messages is wrong.
|
||||
("messages", list, "an array"), # TODO: allow messages to be a string?
|
||||
]:
|
||||
if param not in body:
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="invalid_request",
|
||||
line=line_num,
|
||||
message=f"{param.capitalize()} parameter is required",
|
||||
param=f"body.{param}",
|
||||
)
|
||||
)
|
||||
valid = False
|
||||
elif not isinstance(body[param], expected_type):
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="invalid_request",
|
||||
line=line_num,
|
||||
message=f"{param.capitalize()} must be {type_string}",
|
||||
param=f"body.{param}",
|
||||
)
|
||||
)
|
||||
valid = False
|
||||
|
||||
if "model" in body and isinstance(body["model"], str):
|
||||
try:
|
||||
await self.models_api.get_model(body["model"])
|
||||
except Exception:
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="model_not_found",
|
||||
line=line_num,
|
||||
message=f"Model '{body['model']}' does not exist or is not supported",
|
||||
param="body.model",
|
||||
)
|
||||
)
|
||||
valid = False
|
||||
|
||||
if valid:
|
||||
assert isinstance(url, str), "URL must be a string" # for mypy
|
||||
assert isinstance(body, dict), "Body must be a dictionary" # for mypy
|
||||
requests.append(
|
||||
BatchRequest(
|
||||
line_num=line_num,
|
||||
url=url,
|
||||
method=request["method"],
|
||||
custom_id=request["custom_id"],
|
||||
body=body,
|
||||
),
|
||||
)
|
||||
except json.JSONDecodeError:
|
||||
errors.append(
|
||||
BatchError(
|
||||
code="invalid_json_line",
|
||||
line=line_num,
|
||||
message="This line is not parseable as valid JSON.",
|
||||
)
|
||||
)
|
||||
|
||||
return errors, requests
|
||||
|
||||
async def _process_batch(self, batch_id: str) -> None:
|
||||
"""Background task to process a batch of requests."""
|
||||
try:
|
||||
logger.info(f"Starting batch processing for {batch_id}")
|
||||
async with self._batch_semaphore: # semaphore to limit concurrency
|
||||
logger.info(f"Acquired semaphore for batch {batch_id}")
|
||||
await self._process_batch_impl(batch_id)
|
||||
except asyncio.CancelledError:
|
||||
logger.info(f"Batch processing cancelled for {batch_id}")
|
||||
await self._update_batch(batch_id, status="cancelled", cancelled_at=int(time.time()))
|
||||
except Exception as e:
|
||||
logger.error(f"Batch processing failed for {batch_id}: {e}")
|
||||
await self._update_batch(
|
||||
batch_id,
|
||||
status="failed",
|
||||
failed_at=int(time.time()),
|
||||
errors=Errors(data=[BatchError(code="internal_error", message=str(e))]),
|
||||
)
|
||||
finally:
|
||||
self._processing_tasks.pop(batch_id, None)
|
||||
|
||||
async def _process_batch_impl(self, batch_id: str) -> None:
|
||||
"""Implementation of batch processing logic."""
|
||||
errors: list[BatchError] = []
|
||||
batch = await self.retrieve_batch(batch_id)
|
||||
|
||||
errors, requests = await self._validate_input(batch)
|
||||
if errors:
|
||||
await self._update_batch(batch_id, status="failed", failed_at=int(time.time()), errors=Errors(data=errors))
|
||||
logger.info(f"Batch validation failed for {batch_id} with {len(errors)} errors")
|
||||
return
|
||||
|
||||
logger.info(f"Processing {len(requests)} requests for batch {batch_id}")
|
||||
|
||||
total_requests = len(requests)
|
||||
await self._update_batch(
|
||||
batch_id,
|
||||
status="in_progress",
|
||||
request_counts={"total": total_requests, "completed": 0, "failed": 0},
|
||||
)
|
||||
|
||||
error_results = []
|
||||
success_results = []
|
||||
completed_count = 0
|
||||
failed_count = 0
|
||||
|
||||
for chunk in itertools.batched(requests, self.config.max_concurrent_requests_per_batch):
|
||||
# we use a TaskGroup to ensure all process-single-request tasks are canceled when process-batch is cancelled
|
||||
async with asyncio.TaskGroup() as tg:
|
||||
chunk_tasks = [tg.create_task(self._process_single_request(batch_id, request)) for request in chunk]
|
||||
|
||||
chunk_results = await asyncio.gather(*chunk_tasks, return_exceptions=True)
|
||||
|
||||
for result in chunk_results:
|
||||
if isinstance(result, dict) and result.get("error") is not None: # error response from inference
|
||||
failed_count += 1
|
||||
error_results.append(result)
|
||||
elif isinstance(result, dict) and result.get("response") is not None: # successful inference
|
||||
completed_count += 1
|
||||
success_results.append(result)
|
||||
else: # unexpected result
|
||||
failed_count += 1
|
||||
errors.append(BatchError(code="internal_error", message=f"Unexpected result: {result}"))
|
||||
|
||||
await self._update_batch(
|
||||
batch_id,
|
||||
request_counts={"total": total_requests, "completed": completed_count, "failed": failed_count},
|
||||
)
|
||||
|
||||
if errors:
|
||||
await self._update_batch(
|
||||
batch_id, status="failed", failed_at=int(time.time()), errors=Errors(data=errors)
|
||||
)
|
||||
return
|
||||
|
||||
try:
|
||||
output_file_id = await self._create_output_file(batch_id, success_results, "success")
|
||||
await self._update_batch(batch_id, output_file_id=output_file_id)
|
||||
|
||||
error_file_id = await self._create_output_file(batch_id, error_results, "error")
|
||||
await self._update_batch(batch_id, error_file_id=error_file_id)
|
||||
|
||||
await self._update_batch(batch_id, status="completed", completed_at=int(time.time()))
|
||||
|
||||
logger.info(
|
||||
f"Batch processing completed for {batch_id}: {completed_count} completed, {failed_count} failed"
|
||||
)
|
||||
except Exception as e:
|
||||
# note: errors is empty at this point, so we don't lose anything by ignoring it
|
||||
await self._update_batch(
|
||||
batch_id,
|
||||
status="failed",
|
||||
failed_at=int(time.time()),
|
||||
errors=Errors(data=[BatchError(code="output_failed", message=str(e))]),
|
||||
)
|
||||
|
||||
async def _process_single_request(self, batch_id: str, request: BatchRequest) -> dict:
|
||||
"""Process a single request from the batch."""
|
||||
request_id = f"batch_req_{batch_id}_{request.line_num}"
|
||||
|
||||
try:
|
||||
# TODO(SECURITY): review body for security issues
|
||||
request.body["messages"] = [convert_to_openai_message_param(msg) for msg in request.body["messages"]]
|
||||
chat_response = await self.inference_api.openai_chat_completion(**request.body)
|
||||
|
||||
# this is for mypy, we don't allow streaming so we'll get the right type
|
||||
assert hasattr(chat_response, "model_dump_json"), "Chat response must have model_dump_json method"
|
||||
return {
|
||||
"id": request_id,
|
||||
"custom_id": request.custom_id,
|
||||
"response": {
|
||||
"status_code": 200,
|
||||
"request_id": request_id, # TODO: should this be different?
|
||||
"body": chat_response.model_dump_json(),
|
||||
},
|
||||
}
|
||||
except Exception as e:
|
||||
logger.info(f"Error processing request {request.custom_id} in batch {batch_id}: {e}")
|
||||
return {
|
||||
"id": request_id,
|
||||
"custom_id": request.custom_id,
|
||||
"error": {"type": "request_failed", "message": str(e)},
|
||||
}
|
||||
|
||||
async def _create_output_file(self, batch_id: str, results: list[dict], file_type: str) -> str:
|
||||
"""
|
||||
Create an output file with batch results.
|
||||
|
||||
This function filters results based on the specified file_type
|
||||
and uploads the file to the Files API.
|
||||
"""
|
||||
output_lines = [json.dumps(result) for result in results]
|
||||
|
||||
with AsyncBytesIO("\n".join(output_lines).encode("utf-8")) as file_buffer:
|
||||
file_buffer.filename = f"{batch_id}_{file_type}.jsonl"
|
||||
uploaded_file = await self.files_api.openai_upload_file(file=file_buffer, purpose=OpenAIFilePurpose.BATCH)
|
||||
return uploaded_file.id
|
40
llama_stack/providers/inline/batches/reference/config.py
Normal file
40
llama_stack/providers/inline/batches/reference/config.py
Normal file
|
@ -0,0 +1,40 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
|
||||
|
||||
class ReferenceBatchesImplConfig(BaseModel):
|
||||
"""Configuration for the Reference Batches implementation."""
|
||||
|
||||
kvstore: KVStoreConfig = Field(
|
||||
description="Configuration for the key-value store backend.",
|
||||
)
|
||||
|
||||
max_concurrent_batches: int = Field(
|
||||
default=1,
|
||||
description="Maximum number of concurrent batches to process simultaneously.",
|
||||
ge=1,
|
||||
)
|
||||
|
||||
max_concurrent_requests_per_batch: int = Field(
|
||||
default=10,
|
||||
description="Maximum number of concurrent requests to process per batch.",
|
||||
ge=1,
|
||||
)
|
||||
|
||||
# TODO: add a max requests per second rate limiter
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> dict:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="batches.db",
|
||||
),
|
||||
}
|
|
@ -22,7 +22,7 @@ from llama_stack.apis.safety import (
|
|||
SafetyViolation,
|
||||
ViolationLevel,
|
||||
)
|
||||
from llama_stack.apis.safety.safety import ModerationObject, ModerationObjectResults, OpenAICategories
|
||||
from llama_stack.apis.safety.safety import ModerationObject, ModerationObjectResults
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.core.datatypes import Api
|
||||
from llama_stack.models.llama.datatypes import Role
|
||||
|
@ -72,30 +72,6 @@ SAFETY_CATEGORIES_TO_CODE_MAP = {
|
|||
}
|
||||
SAFETY_CODE_TO_CATEGORIES_MAP = {v: k for k, v in SAFETY_CATEGORIES_TO_CODE_MAP.items()}
|
||||
|
||||
OPENAI_TO_LLAMA_CATEGORIES_MAP = {
|
||||
OpenAICategories.VIOLENCE: [CAT_VIOLENT_CRIMES],
|
||||
OpenAICategories.VIOLENCE_GRAPHIC: [CAT_VIOLENT_CRIMES],
|
||||
OpenAICategories.HARRASMENT: [CAT_CHILD_EXPLOITATION],
|
||||
OpenAICategories.HARRASMENT_THREATENING: [CAT_VIOLENT_CRIMES, CAT_CHILD_EXPLOITATION],
|
||||
OpenAICategories.HATE: [CAT_HATE],
|
||||
OpenAICategories.HATE_THREATENING: [CAT_HATE, CAT_VIOLENT_CRIMES],
|
||||
OpenAICategories.ILLICIT: [CAT_NON_VIOLENT_CRIMES],
|
||||
OpenAICategories.ILLICIT_VIOLENT: [CAT_VIOLENT_CRIMES, CAT_INDISCRIMINATE_WEAPONS],
|
||||
OpenAICategories.SEXUAL: [CAT_SEX_CRIMES, CAT_SEXUAL_CONTENT],
|
||||
OpenAICategories.SEXUAL_MINORS: [CAT_CHILD_EXPLOITATION],
|
||||
OpenAICategories.SELF_HARM: [CAT_SELF_HARM],
|
||||
OpenAICategories.SELF_HARM_INTENT: [CAT_SELF_HARM],
|
||||
OpenAICategories.SELF_HARM_INSTRUCTIONS: [CAT_SELF_HARM, CAT_SPECIALIZED_ADVICE],
|
||||
# These are custom categories that are not in the OpenAI moderation categories
|
||||
"custom/defamation": [CAT_DEFAMATION],
|
||||
"custom/specialized_advice": [CAT_SPECIALIZED_ADVICE],
|
||||
"custom/privacy_violation": [CAT_PRIVACY],
|
||||
"custom/intellectual_property": [CAT_INTELLECTUAL_PROPERTY],
|
||||
"custom/weapons": [CAT_INDISCRIMINATE_WEAPONS],
|
||||
"custom/elections": [CAT_ELECTIONS],
|
||||
"custom/code_interpreter_abuse": [CAT_CODE_INTERPRETER_ABUSE],
|
||||
}
|
||||
|
||||
|
||||
DEFAULT_LG_V3_SAFETY_CATEGORIES = [
|
||||
CAT_VIOLENT_CRIMES,
|
||||
|
@ -424,9 +400,9 @@ class LlamaGuardShield:
|
|||
ModerationObject with appropriate configuration
|
||||
"""
|
||||
# Set default values for safe case
|
||||
categories = dict.fromkeys(OPENAI_TO_LLAMA_CATEGORIES_MAP.keys(), False)
|
||||
category_scores = dict.fromkeys(OPENAI_TO_LLAMA_CATEGORIES_MAP.keys(), 1.0)
|
||||
category_applied_input_types = {key: [] for key in OPENAI_TO_LLAMA_CATEGORIES_MAP.keys()}
|
||||
categories = dict.fromkeys(SAFETY_CATEGORIES_TO_CODE_MAP.keys(), False)
|
||||
category_scores = dict.fromkeys(SAFETY_CATEGORIES_TO_CODE_MAP.keys(), 1.0)
|
||||
category_applied_input_types = {key: [] for key in SAFETY_CATEGORIES_TO_CODE_MAP.keys()}
|
||||
flagged = False
|
||||
user_message = None
|
||||
metadata = {}
|
||||
|
@ -453,19 +429,15 @@ class LlamaGuardShield:
|
|||
],
|
||||
)
|
||||
|
||||
# Get OpenAI categories for the unsafe codes
|
||||
openai_categories = []
|
||||
for code in unsafe_code_list:
|
||||
llama_guard_category = SAFETY_CODE_TO_CATEGORIES_MAP[code]
|
||||
openai_categories.extend(
|
||||
k for k, v_l in OPENAI_TO_LLAMA_CATEGORIES_MAP.items() if llama_guard_category in v_l
|
||||
)
|
||||
llama_guard_category = [SAFETY_CODE_TO_CATEGORIES_MAP[code] for code in unsafe_code_list]
|
||||
|
||||
# Update categories for unsafe content
|
||||
categories = {k: k in openai_categories for k in OPENAI_TO_LLAMA_CATEGORIES_MAP}
|
||||
category_scores = {k: 1.0 if k in openai_categories else 0.0 for k in OPENAI_TO_LLAMA_CATEGORIES_MAP}
|
||||
categories = {k: k in llama_guard_category for k in SAFETY_CATEGORIES_TO_CODE_MAP.keys()}
|
||||
category_scores = {
|
||||
k: 1.0 if k in llama_guard_category else 0.0 for k in SAFETY_CATEGORIES_TO_CODE_MAP.keys()
|
||||
}
|
||||
category_applied_input_types = {
|
||||
k: ["text"] if k in openai_categories else [] for k in OPENAI_TO_LLAMA_CATEGORIES_MAP
|
||||
k: ["text"] if k in llama_guard_category else [] for k in SAFETY_CATEGORIES_TO_CODE_MAP.keys()
|
||||
}
|
||||
flagged = True
|
||||
user_message = CANNED_RESPONSE_TEXT
|
||||
|
|
|
@ -18,6 +18,7 @@ from llama_stack.apis.safety import (
|
|||
ShieldStore,
|
||||
ViolationLevel,
|
||||
)
|
||||
from llama_stack.apis.safety.safety import ModerationObject
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.core.utils.model_utils import model_local_dir
|
||||
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
|
||||
|
@ -64,6 +65,9 @@ class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
|||
|
||||
return await self.shield.run(messages)
|
||||
|
||||
async def run_moderation(self, input: str | list[str], model: str) -> ModerationObject:
|
||||
raise NotImplementedError("run_moderation is not implemented for Prompt Guard")
|
||||
|
||||
|
||||
class PromptGuardShield:
|
||||
def __init__(
|
||||
|
|
|
@ -33,6 +33,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
|
|||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -128,11 +129,12 @@ class FaissIndex(EmbeddingIndex):
|
|||
# Save updated index
|
||||
await self._save_index()
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
if chunk_id not in self.chunk_ids:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
|
||||
if not set(chunk_ids).issubset(self.chunk_ids):
|
||||
return
|
||||
|
||||
async with self.chunk_id_lock:
|
||||
def remove_chunk(chunk_id: str):
|
||||
index = self.chunk_ids.index(chunk_id)
|
||||
self.index.remove_ids(np.array([index]))
|
||||
|
||||
|
@ -146,6 +148,10 @@ class FaissIndex(EmbeddingIndex):
|
|||
self.chunk_by_index = new_chunk_by_index
|
||||
self.chunk_ids.pop(index)
|
||||
|
||||
async with self.chunk_id_lock:
|
||||
for chunk_id in chunk_ids:
|
||||
remove_chunk(chunk_id)
|
||||
|
||||
await self._save_index()
|
||||
|
||||
async def query_vector(
|
||||
|
@ -297,8 +303,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a faiss index"""
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a faiss index"""
|
||||
faiss_index = self.cache[store_id].index
|
||||
for chunk_id in chunk_ids:
|
||||
await faiss_index.delete_chunk(chunk_id)
|
||||
await faiss_index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
@ -31,6 +31,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIV
|
|||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
RERANKER_TYPE_RRF,
|
||||
RERANKER_TYPE_WEIGHTED,
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -426,34 +427,36 @@ class SQLiteVecIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the SQLite vector store."""
|
||||
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
|
||||
|
||||
def _delete_chunk():
|
||||
def _delete_chunks():
|
||||
connection = _create_sqlite_connection(self.db_path)
|
||||
cur = connection.cursor()
|
||||
try:
|
||||
cur.execute("BEGIN TRANSACTION")
|
||||
|
||||
# Delete from metadata table
|
||||
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id = ?", (chunk_id,))
|
||||
placeholders = ",".join("?" * len(chunk_ids))
|
||||
cur.execute(f"DELETE FROM {self.metadata_table} WHERE id IN ({placeholders})", chunk_ids)
|
||||
|
||||
# Delete from vector table
|
||||
cur.execute(f"DELETE FROM {self.vector_table} WHERE id = ?", (chunk_id,))
|
||||
cur.execute(f"DELETE FROM {self.vector_table} WHERE id IN ({placeholders})", chunk_ids)
|
||||
|
||||
# Delete from FTS table
|
||||
cur.execute(f"DELETE FROM {self.fts_table} WHERE id = ?", (chunk_id,))
|
||||
cur.execute(f"DELETE FROM {self.fts_table} WHERE id IN ({placeholders})", chunk_ids)
|
||||
|
||||
connection.commit()
|
||||
except Exception as e:
|
||||
connection.rollback()
|
||||
logger.error(f"Error deleting chunk {chunk_id}: {e}")
|
||||
logger.error(f"Error deleting chunks: {e}")
|
||||
raise
|
||||
finally:
|
||||
cur.close()
|
||||
connection.close()
|
||||
|
||||
await asyncio.to_thread(_delete_chunk)
|
||||
await asyncio.to_thread(_delete_chunks)
|
||||
|
||||
|
||||
class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
|
@ -551,12 +554,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
|
|||
raise VectorStoreNotFoundError(vector_db_id)
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a sqlite_vec index."""
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a sqlite_vec index."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(store_id)
|
||||
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
26
llama_stack/providers/registry/batches.py
Normal file
26
llama_stack/providers/registry/batches.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
|
||||
|
||||
def available_providers() -> list[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.batches,
|
||||
provider_type="inline::reference",
|
||||
pip_packages=["openai"],
|
||||
module="llama_stack.providers.inline.batches.reference",
|
||||
config_class="llama_stack.providers.inline.batches.reference.config.ReferenceBatchesImplConfig",
|
||||
api_dependencies=[
|
||||
Api.inference,
|
||||
Api.files,
|
||||
Api.models,
|
||||
],
|
||||
description="Reference implementation of batches API with KVStore persistence.",
|
||||
),
|
||||
]
|
|
@ -342,6 +342,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
@ -350,6 +351,7 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
|
|||
module="llama_stack.providers.inline.vector_io.chroma",
|
||||
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
||||
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
||||
|
@ -464,6 +466,7 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
@ -731,6 +734,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi
|
|||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
|
|
@ -235,6 +235,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
# TODO: tools are never added to the request, so we need to add them here
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_openai_dict(m, download=True) for m in request.messages
|
||||
|
@ -378,6 +379,7 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
# Fireworks chat completions OpenAI-compatible API does not support
|
||||
# tool calls properly.
|
||||
llama_model = self.get_llama_model(model_obj.provider_resource_id)
|
||||
|
||||
if llama_model:
|
||||
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
|
||||
self,
|
||||
|
@ -431,4 +433,5 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
user=user,
|
||||
)
|
||||
|
||||
logger.debug(f"fireworks params: {params}")
|
||||
return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)
|
||||
|
|
|
@ -457,9 +457,6 @@ class OllamaInferenceAdapter(
|
|||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_obj = await self._get_model(model)
|
||||
if model_obj.model_type != ModelType.embedding:
|
||||
raise ValueError(f"Model {model} is not an embedding model")
|
||||
|
||||
if model_obj.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model} has no provider_resource_id set")
|
||||
|
||||
|
|
|
@ -308,9 +308,7 @@ class TGIAdapter(_HfAdapter):
|
|||
if not config.url:
|
||||
raise ValueError("You must provide a URL in run.yaml (or via the TGI_URL environment variable) to use TGI.")
|
||||
log.info(f"Initializing TGI client with url={config.url}")
|
||||
self.client = AsyncInferenceClient(
|
||||
model=config.url,
|
||||
)
|
||||
self.client = AsyncInferenceClient(model=config.url, provider="hf-inference")
|
||||
endpoint_info = await self.client.get_endpoint_info()
|
||||
self.max_tokens = endpoint_info["max_total_tokens"]
|
||||
self.model_id = endpoint_info["model_id"]
|
||||
|
|
|
@ -26,6 +26,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
|
|||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -146,8 +147,10 @@ class ChromaIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
await maybe_await(self.collection.delete([chunk_id]))
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a single chunk from the Chroma collection by its ID."""
|
||||
ids = [f"{chunk.document_id}:{chunk.chunk_id}" for chunk in chunks_for_deletion]
|
||||
await maybe_await(self.collection.delete(ids=ids))
|
||||
|
||||
async def query_hybrid(
|
||||
self,
|
||||
|
@ -175,6 +178,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.cache = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
self.vector_db_store = None
|
||||
self.files_api = files_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
|
@ -258,5 +262,10 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a Chroma vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
@ -28,6 +28,7 @@ from llama_stack.providers.utils.kvstore.api import KVStore
|
|||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
RERANKER_TYPE_WEIGHTED,
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -287,14 +288,17 @@ class MilvusIndex(EmbeddingIndex):
|
|||
|
||||
return QueryChunksResponse(chunks=filtered_chunks, scores=filtered_scores)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the Milvus collection."""
|
||||
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
|
||||
try:
|
||||
# Use IN clause with square brackets and single quotes for VARCHAR field
|
||||
chunk_ids_str = ", ".join(f"'{chunk_id}'" for chunk_id in chunk_ids)
|
||||
await asyncio.to_thread(
|
||||
self.client.delete, collection_name=self.collection_name, filter=f'chunk_id == "{chunk_id}"'
|
||||
self.client.delete, collection_name=self.collection_name, filter=f"chunk_id in [{chunk_ids_str}]"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting chunk {chunk_id} from Milvus collection {self.collection_name}: {e}")
|
||||
logger.error(f"Error deleting chunks from Milvus collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
|
||||
|
@ -420,12 +424,10 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a chunk from a milvus vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(store_id)
|
||||
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
@ -27,6 +27,7 @@ from llama_stack.providers.utils.kvstore import kvstore_impl
|
|||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -163,10 +164,11 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the PostgreSQL table."""
|
||||
chunk_ids = [c.chunk_id for c in chunks_for_deletion]
|
||||
with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur:
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id = %s", (chunk_id,))
|
||||
cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids,))
|
||||
|
||||
|
||||
class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
|
@ -275,12 +277,10 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
|
|||
self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api)
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete a chunk from a PostgreSQL vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise VectorStoreNotFoundError(store_id)
|
||||
|
||||
for chunk_id in chunk_ids:
|
||||
# Use the index's delete_chunk method
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
@ -29,6 +29,7 @@ from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig a
|
|||
from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -88,15 +89,16 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
await self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Remove a chunk from the Qdrant collection."""
|
||||
chunk_ids = [convert_id(c.chunk_id) for c in chunks_for_deletion]
|
||||
try:
|
||||
await self.client.delete(
|
||||
collection_name=self.collection_name,
|
||||
points_selector=models.PointIdsList(points=[convert_id(chunk_id)]),
|
||||
points_selector=models.PointIdsList(points=chunk_ids),
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Error deleting chunk {chunk_id} from Qdrant collection {self.collection_name}: {e}")
|
||||
log.error(f"Error deleting chunks from Qdrant collection {self.collection_name}: {e}")
|
||||
raise
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
|
@ -264,12 +266,14 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
|
|||
) -> VectorStoreFileObject:
|
||||
# Qdrant doesn't allow multiple clients to access the same storage path simultaneously.
|
||||
async with self._qdrant_lock:
|
||||
await super().openai_attach_file_to_vector_store(vector_store_id, file_id, attributes, chunking_strategy)
|
||||
return await super().openai_attach_file_to_vector_store(
|
||||
vector_store_id, file_id, attributes, chunking_strategy
|
||||
)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a Qdrant vector store."""
|
||||
index = await self._get_and_cache_vector_db_index(store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {store_id} not found")
|
||||
for chunk_id in chunk_ids:
|
||||
await index.index.delete_chunk(chunk_id)
|
||||
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
@ -26,6 +26,7 @@ from llama_stack.providers.utils.memory.openai_vector_store_mixin import (
|
|||
OpenAIVectorStoreMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
@ -67,6 +68,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
data_objects.append(
|
||||
wvc.data.DataObject(
|
||||
properties={
|
||||
"chunk_id": chunk.chunk_id,
|
||||
"chunk_content": chunk.model_dump_json(),
|
||||
},
|
||||
vector=embeddings[i].tolist(),
|
||||
|
@ -79,10 +81,11 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
# TODO: make this async friendly
|
||||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def delete_chunk(self, chunk_id: str) -> None:
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
collection = self.client.collections.get(sanitized_collection_name)
|
||||
collection.data.delete_many(where=Filter.by_property("id").contains_any([chunk_id]))
|
||||
chunk_ids = [chunk.chunk_id for chunk in chunks_for_deletion]
|
||||
collection.data.delete_many(where=Filter.by_property("chunk_id").contains_any(chunk_ids))
|
||||
|
||||
async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
sanitized_collection_name = sanitize_collection_name(self.collection_name, weaviate_format=True)
|
||||
|
@ -307,10 +310,10 @@ class WeaviateVectorIOAdapter(
|
|||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
sanitized_collection_name = sanitize_collection_name(store_id, weaviate_format=True)
|
||||
index = await self._get_and_cache_vector_db_index(sanitized_collection_name)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {sanitized_collection_name} not found")
|
||||
|
||||
await index.delete(chunk_ids)
|
||||
await index.index.delete_chunks(chunks_for_deletion)
|
||||
|
|
|
@ -31,15 +31,15 @@ from openai.types.chat import (
|
|||
from openai.types.chat import (
|
||||
ChatCompletionContentPartTextParam as OpenAIChatCompletionContentPartTextParam,
|
||||
)
|
||||
from openai.types.chat import (
|
||||
ChatCompletionMessageFunctionToolCall as OpenAIChatCompletionMessageFunctionToolCall,
|
||||
)
|
||||
from openai.types.chat import (
|
||||
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
|
||||
)
|
||||
from openai.types.chat import (
|
||||
ChatCompletionMessageToolCall,
|
||||
)
|
||||
from openai.types.chat import (
|
||||
ChatCompletionMessageToolCallParam as OpenAIChatCompletionMessageToolCall,
|
||||
)
|
||||
from openai.types.chat import (
|
||||
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
|
||||
)
|
||||
|
@ -70,7 +70,7 @@ from openai.types.chat.chat_completion_chunk import (
|
|||
from openai.types.chat.chat_completion_content_part_image_param import (
|
||||
ImageURL as OpenAIImageURL,
|
||||
)
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
from openai.types.chat.chat_completion_message_tool_call import (
|
||||
Function as OpenAIFunction,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
|
@ -633,7 +633,7 @@ async def convert_message_to_openai_dict_new(
|
|||
)
|
||||
elif isinstance(message, CompletionMessage):
|
||||
tool_calls = [
|
||||
OpenAIChatCompletionMessageToolCall(
|
||||
OpenAIChatCompletionMessageFunctionToolCall(
|
||||
id=tool.call_id,
|
||||
function=OpenAIFunction(
|
||||
name=(tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value),
|
||||
|
@ -903,7 +903,7 @@ def _convert_openai_request_response_format(
|
|||
|
||||
|
||||
def _convert_openai_tool_calls(
|
||||
tool_calls: list[OpenAIChatCompletionMessageToolCall],
|
||||
tool_calls: list[OpenAIChatCompletionMessageFunctionToolCall],
|
||||
) -> list[ToolCall]:
|
||||
"""
|
||||
Convert an OpenAI ChatCompletionMessageToolCall list into a list of ToolCall.
|
||||
|
|
|
@ -6,7 +6,6 @@
|
|||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import mimetypes
|
||||
import time
|
||||
import uuid
|
||||
|
@ -37,10 +36,15 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreSearchResponse,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, make_overlapped_chunks
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ChunkForDeletion,
|
||||
content_from_data_and_mime_type,
|
||||
make_overlapped_chunks,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger = get_logger(__name__, category="vector_io")
|
||||
|
||||
# Constants for OpenAI vector stores
|
||||
CHUNK_MULTIPLIER = 5
|
||||
|
@ -154,8 +158,8 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
@abstractmethod
|
||||
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
|
||||
"""Delete a chunk from a vector store."""
|
||||
async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None:
|
||||
"""Delete chunks from a vector store."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
|
@ -614,7 +618,7 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
)
|
||||
vector_store_file_object.status = "completed"
|
||||
except Exception as e:
|
||||
logger.error(f"Error attaching file to vector store: {e}")
|
||||
logger.exception("Error attaching file to vector store")
|
||||
vector_store_file_object.status = "failed"
|
||||
vector_store_file_object.last_error = VectorStoreFileLastError(
|
||||
code="server_error",
|
||||
|
@ -767,7 +771,21 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
|
||||
chunks = [Chunk.model_validate(c) for c in dict_chunks]
|
||||
await self.delete_chunks(vector_store_id, [str(c.chunk_id) for c in chunks if c.chunk_id])
|
||||
|
||||
# Create ChunkForDeletion objects with both chunk_id and document_id
|
||||
chunks_for_deletion = []
|
||||
for c in chunks:
|
||||
if c.chunk_id:
|
||||
document_id = c.metadata.get("document_id") or (
|
||||
c.chunk_metadata.document_id if c.chunk_metadata else None
|
||||
)
|
||||
if document_id:
|
||||
chunks_for_deletion.append(ChunkForDeletion(chunk_id=str(c.chunk_id), document_id=document_id))
|
||||
else:
|
||||
logger.warning(f"Chunk {c.chunk_id} has no document_id, skipping deletion")
|
||||
|
||||
if chunks_for_deletion:
|
||||
await self.delete_chunks(vector_store_id, chunks_for_deletion)
|
||||
|
||||
store_info = self.openai_vector_stores[vector_store_id].copy()
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@ from urllib.parse import unquote
|
|||
import httpx
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
|
@ -34,6 +35,18 @@ from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id
|
|||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ChunkForDeletion(BaseModel):
|
||||
"""Information needed to delete a chunk from a vector store.
|
||||
|
||||
:param chunk_id: The ID of the chunk to delete
|
||||
:param document_id: The ID of the document this chunk belongs to
|
||||
"""
|
||||
|
||||
chunk_id: str
|
||||
document_id: str
|
||||
|
||||
|
||||
# Constants for reranker types
|
||||
RERANKER_TYPE_RRF = "rrf"
|
||||
RERANKER_TYPE_WEIGHTED = "weighted"
|
||||
|
@ -232,7 +245,7 @@ class EmbeddingIndex(ABC):
|
|||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
async def delete_chunk(self, chunk_id: str):
|
||||
async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
|
|
1
llama_stack/ui/.nvmrc
Normal file
1
llama_stack/ui/.nvmrc
Normal file
|
@ -0,0 +1 @@
|
|||
22.5.1
|
|
@ -1,3 +1,12 @@
|
|||
# Ignore artifacts:
|
||||
build
|
||||
coverage
|
||||
.next
|
||||
node_modules
|
||||
dist
|
||||
*.lock
|
||||
*.log
|
||||
|
||||
# Generated files
|
||||
*.min.js
|
||||
*.min.css
|
||||
|
|
|
@ -1 +1,10 @@
|
|||
{}
|
||||
{
|
||||
"semi": true,
|
||||
"trailingComma": "es5",
|
||||
"singleQuote": false,
|
||||
"printWidth": 80,
|
||||
"tabWidth": 2,
|
||||
"useTabs": false,
|
||||
"bracketSpacing": true,
|
||||
"arrowParens": "avoid"
|
||||
}
|
||||
|
|
|
@ -47,7 +47,7 @@ async function proxyRequest(request: NextRequest, method: string) {
|
|||
const responseText = await response.text();
|
||||
|
||||
console.log(
|
||||
`Response from FastAPI: ${response.status} ${response.statusText}`,
|
||||
`Response from FastAPI: ${response.status} ${response.statusText}`
|
||||
);
|
||||
|
||||
// Create response with same status and headers
|
||||
|
@ -74,7 +74,7 @@ async function proxyRequest(request: NextRequest, method: string) {
|
|||
backend_url: BACKEND_URL,
|
||||
timestamp: new Date().toISOString(),
|
||||
},
|
||||
{ status: 500 },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -51,9 +51,9 @@ export default function SignInPage() {
|
|||
onClick={() => {
|
||||
console.log("Signing in with GitHub...");
|
||||
signIn("github", { callbackUrl: "/auth/signin" }).catch(
|
||||
(error) => {
|
||||
error => {
|
||||
console.error("Sign in error:", error);
|
||||
},
|
||||
}
|
||||
);
|
||||
}}
|
||||
className="w-full"
|
||||
|
|
|
@ -29,14 +29,13 @@ export default function ChatPlaygroundPage() {
|
|||
|
||||
const isModelsLoading = modelsLoading ?? true;
|
||||
|
||||
|
||||
useEffect(() => {
|
||||
const fetchModels = async () => {
|
||||
try {
|
||||
setModelsLoading(true);
|
||||
setModelsError(null);
|
||||
const modelList = await client.models.list();
|
||||
const llmModels = modelList.filter(model => model.model_type === 'llm');
|
||||
const llmModels = modelList.filter(model => model.model_type === "llm");
|
||||
setModels(llmModels);
|
||||
if (llmModels.length > 0) {
|
||||
setSelectedModel(llmModels[0].identifier);
|
||||
|
@ -53,103 +52,122 @@ export default function ChatPlaygroundPage() {
|
|||
}, [client]);
|
||||
|
||||
const extractTextContent = (content: unknown): string => {
|
||||
if (typeof content === 'string') {
|
||||
if (typeof content === "string") {
|
||||
return content;
|
||||
}
|
||||
if (Array.isArray(content)) {
|
||||
return content
|
||||
.filter(item => item && typeof item === 'object' && 'type' in item && item.type === 'text')
|
||||
.map(item => (item && typeof item === 'object' && 'text' in item) ? String(item.text) : '')
|
||||
.join('');
|
||||
.filter(
|
||||
item =>
|
||||
item &&
|
||||
typeof item === "object" &&
|
||||
"type" in item &&
|
||||
item.type === "text"
|
||||
)
|
||||
.map(item =>
|
||||
item && typeof item === "object" && "text" in item
|
||||
? String(item.text)
|
||||
: ""
|
||||
)
|
||||
.join("");
|
||||
}
|
||||
if (content && typeof content === 'object' && 'type' in content && content.type === 'text' && 'text' in content) {
|
||||
return String(content.text) || '';
|
||||
if (
|
||||
content &&
|
||||
typeof content === "object" &&
|
||||
"type" in content &&
|
||||
content.type === "text" &&
|
||||
"text" in content
|
||||
) {
|
||||
return String(content.text) || "";
|
||||
}
|
||||
return '';
|
||||
return "";
|
||||
};
|
||||
|
||||
const handleInputChange = (e: React.ChangeEvent<HTMLTextAreaElement>) => {
|
||||
setInput(e.target.value);
|
||||
};
|
||||
|
||||
const handleSubmit = async (event?: { preventDefault?: () => void }) => {
|
||||
event?.preventDefault?.();
|
||||
if (!input.trim()) return;
|
||||
const handleSubmit = async (event?: { preventDefault?: () => void }) => {
|
||||
event?.preventDefault?.();
|
||||
if (!input.trim()) return;
|
||||
|
||||
// Add user message to chat
|
||||
const userMessage: Message = {
|
||||
id: Date.now().toString(),
|
||||
role: "user",
|
||||
content: input.trim(),
|
||||
createdAt: new Date(),
|
||||
};
|
||||
|
||||
setMessages(prev => [...prev, userMessage]);
|
||||
setInput("");
|
||||
|
||||
// Use the helper function with the content
|
||||
await handleSubmitWithContent(userMessage.content);
|
||||
};
|
||||
|
||||
const handleSubmitWithContent = async (content: string) => {
|
||||
setIsGenerating(true);
|
||||
setError(null);
|
||||
|
||||
try {
|
||||
const messageParams: CompletionCreateParams["messages"] = [
|
||||
...messages.map(msg => {
|
||||
const msgContent = typeof msg.content === 'string' ? msg.content : extractTextContent(msg.content);
|
||||
if (msg.role === "user") {
|
||||
return { role: "user" as const, content: msgContent };
|
||||
} else if (msg.role === "assistant") {
|
||||
return { role: "assistant" as const, content: msgContent };
|
||||
} else {
|
||||
return { role: "system" as const, content: msgContent };
|
||||
}
|
||||
}),
|
||||
{ role: "user" as const, content }
|
||||
];
|
||||
|
||||
const response = await client.chat.completions.create({
|
||||
model: selectedModel,
|
||||
messages: messageParams,
|
||||
stream: true,
|
||||
});
|
||||
|
||||
const assistantMessage: Message = {
|
||||
id: (Date.now() + 1).toString(),
|
||||
role: "assistant",
|
||||
content: "",
|
||||
// Add user message to chat
|
||||
const userMessage: Message = {
|
||||
id: Date.now().toString(),
|
||||
role: "user",
|
||||
content: input.trim(),
|
||||
createdAt: new Date(),
|
||||
};
|
||||
|
||||
setMessages(prev => [...prev, assistantMessage]);
|
||||
let fullContent = "";
|
||||
for await (const chunk of response) {
|
||||
if (chunk.choices && chunk.choices[0]?.delta?.content) {
|
||||
const deltaContent = chunk.choices[0].delta.content;
|
||||
fullContent += deltaContent;
|
||||
setMessages(prev => [...prev, userMessage]);
|
||||
setInput("");
|
||||
|
||||
flushSync(() => {
|
||||
setMessages(prev => {
|
||||
const newMessages = [...prev];
|
||||
const lastMessage = newMessages[newMessages.length - 1];
|
||||
if (lastMessage.role === "assistant") {
|
||||
lastMessage.content = fullContent;
|
||||
}
|
||||
return newMessages;
|
||||
// Use the helper function with the content
|
||||
await handleSubmitWithContent(userMessage.content);
|
||||
};
|
||||
|
||||
const handleSubmitWithContent = async (content: string) => {
|
||||
setIsGenerating(true);
|
||||
setError(null);
|
||||
|
||||
try {
|
||||
const messageParams: CompletionCreateParams["messages"] = [
|
||||
...messages.map(msg => {
|
||||
const msgContent =
|
||||
typeof msg.content === "string"
|
||||
? msg.content
|
||||
: extractTextContent(msg.content);
|
||||
if (msg.role === "user") {
|
||||
return { role: "user" as const, content: msgContent };
|
||||
} else if (msg.role === "assistant") {
|
||||
return { role: "assistant" as const, content: msgContent };
|
||||
} else {
|
||||
return { role: "system" as const, content: msgContent };
|
||||
}
|
||||
}),
|
||||
{ role: "user" as const, content },
|
||||
];
|
||||
|
||||
const response = await client.chat.completions.create({
|
||||
model: selectedModel,
|
||||
messages: messageParams,
|
||||
stream: true,
|
||||
});
|
||||
|
||||
const assistantMessage: Message = {
|
||||
id: (Date.now() + 1).toString(),
|
||||
role: "assistant",
|
||||
content: "",
|
||||
createdAt: new Date(),
|
||||
};
|
||||
|
||||
setMessages(prev => [...prev, assistantMessage]);
|
||||
let fullContent = "";
|
||||
for await (const chunk of response) {
|
||||
if (chunk.choices && chunk.choices[0]?.delta?.content) {
|
||||
const deltaContent = chunk.choices[0].delta.content;
|
||||
fullContent += deltaContent;
|
||||
|
||||
flushSync(() => {
|
||||
setMessages(prev => {
|
||||
const newMessages = [...prev];
|
||||
const lastMessage = newMessages[newMessages.length - 1];
|
||||
if (lastMessage.role === "assistant") {
|
||||
lastMessage.content = fullContent;
|
||||
}
|
||||
return newMessages;
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
} catch (err) {
|
||||
console.error("Error sending message:", err);
|
||||
setError("Failed to send message. Please try again.");
|
||||
setMessages(prev => prev.slice(0, -1));
|
||||
} finally {
|
||||
setIsGenerating(false);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error("Error sending message:", err);
|
||||
setError("Failed to send message. Please try again.");
|
||||
setMessages(prev => prev.slice(0, -1));
|
||||
} finally {
|
||||
setIsGenerating(false);
|
||||
}
|
||||
};
|
||||
};
|
||||
const suggestions = [
|
||||
"Write a Python function that prints 'Hello, World!'",
|
||||
"Explain step-by-step how to solve this math problem: If x² + 6x + 9 = 25, what is x?",
|
||||
|
@ -163,7 +181,7 @@ const handleSubmitWithContent = async (content: string) => {
|
|||
content: message.content,
|
||||
createdAt: new Date(),
|
||||
};
|
||||
setMessages(prev => [...prev, newMessage])
|
||||
setMessages(prev => [...prev, newMessage]);
|
||||
handleSubmitWithContent(newMessage.content);
|
||||
};
|
||||
|
||||
|
@ -177,12 +195,20 @@ const handleSubmitWithContent = async (content: string) => {
|
|||
<div className="mb-4 flex justify-between items-center">
|
||||
<h1 className="text-2xl font-bold">Chat Playground (Completions)</h1>
|
||||
<div className="flex gap-2">
|
||||
<Select value={selectedModel} onValueChange={setSelectedModel} disabled={isModelsLoading || isGenerating}>
|
||||
<Select
|
||||
value={selectedModel}
|
||||
onValueChange={setSelectedModel}
|
||||
disabled={isModelsLoading || isGenerating}
|
||||
>
|
||||
<SelectTrigger className="w-[180px]">
|
||||
<SelectValue placeholder={isModelsLoading ? "Loading models..." : "Select Model"} />
|
||||
<SelectValue
|
||||
placeholder={
|
||||
isModelsLoading ? "Loading models..." : "Select Model"
|
||||
}
|
||||
/>
|
||||
</SelectTrigger>
|
||||
<SelectContent>
|
||||
{models.map((model) => (
|
||||
{models.map(model => (
|
||||
<SelectItem key={model.identifier} value={model.identifier}>
|
||||
{model.identifier}
|
||||
</SelectItem>
|
||||
|
|
|
@ -33,12 +33,12 @@ export default function ChatCompletionDetailPage() {
|
|||
} catch (err) {
|
||||
console.error(
|
||||
`Error fetching chat completion detail for ID ${id}:`,
|
||||
err,
|
||||
err
|
||||
);
|
||||
setError(
|
||||
err instanceof Error
|
||||
? err
|
||||
: new Error("Failed to fetch completion detail"),
|
||||
: new Error("Failed to fetch completion detail")
|
||||
);
|
||||
} finally {
|
||||
setIsLoading(false);
|
||||
|
|
|
@ -13,10 +13,10 @@ export default function ResponseDetailPage() {
|
|||
const client = useAuthClient();
|
||||
|
||||
const [responseDetail, setResponseDetail] = useState<OpenAIResponse | null>(
|
||||
null,
|
||||
null
|
||||
);
|
||||
const [inputItems, setInputItems] = useState<InputItemListResponse | null>(
|
||||
null,
|
||||
null
|
||||
);
|
||||
const [isLoading, setIsLoading] = useState<boolean>(true);
|
||||
const [isLoadingInputItems, setIsLoadingInputItems] = useState<boolean>(true);
|
||||
|
@ -25,7 +25,7 @@ export default function ResponseDetailPage() {
|
|||
|
||||
// Helper function to convert ResponseObject to OpenAIResponse
|
||||
const convertResponseObject = (
|
||||
responseData: ResponseObject,
|
||||
responseData: ResponseObject
|
||||
): OpenAIResponse => {
|
||||
return {
|
||||
id: responseData.id,
|
||||
|
@ -73,12 +73,12 @@ export default function ResponseDetailPage() {
|
|||
} else {
|
||||
console.error(
|
||||
`Error fetching response detail for ID ${id}:`,
|
||||
responseResult.reason,
|
||||
responseResult.reason
|
||||
);
|
||||
setError(
|
||||
responseResult.reason instanceof Error
|
||||
? responseResult.reason
|
||||
: new Error("Failed to fetch response detail"),
|
||||
: new Error("Failed to fetch response detail")
|
||||
);
|
||||
}
|
||||
|
||||
|
@ -90,18 +90,18 @@ export default function ResponseDetailPage() {
|
|||
} else {
|
||||
console.error(
|
||||
`Error fetching input items for response ID ${id}:`,
|
||||
inputItemsResult.reason,
|
||||
inputItemsResult.reason
|
||||
);
|
||||
setInputItemsError(
|
||||
inputItemsResult.reason instanceof Error
|
||||
? inputItemsResult.reason
|
||||
: new Error("Failed to fetch input items"),
|
||||
: new Error("Failed to fetch input items")
|
||||
);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error(`Unexpected error fetching data for ID ${id}:`, err);
|
||||
setError(
|
||||
err instanceof Error ? err : new Error("Unexpected error occurred"),
|
||||
err instanceof Error ? err : new Error("Unexpected error occurred")
|
||||
);
|
||||
} finally {
|
||||
setIsLoading(false);
|
||||
|
|
|
@ -18,7 +18,10 @@ import {
|
|||
PropertiesCard,
|
||||
PropertyItem,
|
||||
} from "@/components/layout/detail-layout";
|
||||
import { PageBreadcrumb, BreadcrumbSegment } from "@/components/layout/page-breadcrumb";
|
||||
import {
|
||||
PageBreadcrumb,
|
||||
BreadcrumbSegment,
|
||||
} from "@/components/layout/page-breadcrumb";
|
||||
|
||||
export default function ContentDetailPage() {
|
||||
const params = useParams();
|
||||
|
@ -28,13 +31,13 @@ export default function ContentDetailPage() {
|
|||
const contentId = params.contentId as string;
|
||||
const client = useAuthClient();
|
||||
|
||||
const getTextFromContent = (content: any): string => {
|
||||
if (typeof content === 'string') {
|
||||
const getTextFromContent = (content: unknown): string => {
|
||||
if (typeof content === "string") {
|
||||
return content;
|
||||
} else if (content && content.type === 'text') {
|
||||
} else if (content && content.type === "text") {
|
||||
return content.text;
|
||||
}
|
||||
return '';
|
||||
return "";
|
||||
};
|
||||
|
||||
const [store, setStore] = useState<VectorStore | null>(null);
|
||||
|
@ -44,7 +47,9 @@ export default function ContentDetailPage() {
|
|||
const [error, setError] = useState<Error | null>(null);
|
||||
const [isEditing, setIsEditing] = useState(false);
|
||||
const [editedContent, setEditedContent] = useState("");
|
||||
const [editedMetadata, setEditedMetadata] = useState<Record<string, any>>({});
|
||||
const [editedMetadata, setEditedMetadata] = useState<Record<string, unknown>>(
|
||||
{}
|
||||
);
|
||||
const [isEditingEmbedding, setIsEditingEmbedding] = useState(false);
|
||||
const [editedEmbedding, setEditedEmbedding] = useState<number[]>([]);
|
||||
|
||||
|
@ -64,8 +69,13 @@ export default function ContentDetailPage() {
|
|||
setFile(fileResponse as VectorStoreFile);
|
||||
|
||||
const contentsAPI = new ContentsAPI(client);
|
||||
const contentsResponse = await contentsAPI.listContents(vectorStoreId, fileId);
|
||||
const targetContent = contentsResponse.data.find(c => c.id === contentId);
|
||||
const contentsResponse = await contentsAPI.listContents(
|
||||
vectorStoreId,
|
||||
fileId
|
||||
);
|
||||
const targetContent = contentsResponse.data.find(
|
||||
c => c.id === contentId
|
||||
);
|
||||
|
||||
if (targetContent) {
|
||||
setContent(targetContent);
|
||||
|
@ -76,7 +86,9 @@ export default function ContentDetailPage() {
|
|||
throw new Error(`Content ${contentId} not found`);
|
||||
}
|
||||
} catch (err) {
|
||||
setError(err instanceof Error ? err : new Error("Failed to load content."));
|
||||
setError(
|
||||
err instanceof Error ? err : new Error("Failed to load content.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoading(false);
|
||||
}
|
||||
|
@ -88,7 +100,8 @@ export default function ContentDetailPage() {
|
|||
if (!content) return;
|
||||
|
||||
try {
|
||||
const updates: { content?: string; metadata?: Record<string, any> } = {};
|
||||
const updates: { content?: string; metadata?: Record<string, unknown> } =
|
||||
{};
|
||||
|
||||
if (editedContent !== getTextFromContent(content.content)) {
|
||||
updates.content = editedContent;
|
||||
|
@ -100,25 +113,32 @@ export default function ContentDetailPage() {
|
|||
|
||||
if (Object.keys(updates).length > 0) {
|
||||
const contentsAPI = new ContentsAPI(client);
|
||||
const updatedContent = await contentsAPI.updateContent(vectorStoreId, fileId, contentId, updates);
|
||||
const updatedContent = await contentsAPI.updateContent(
|
||||
vectorStoreId,
|
||||
fileId,
|
||||
contentId,
|
||||
updates
|
||||
);
|
||||
setContent(updatedContent);
|
||||
}
|
||||
|
||||
setIsEditing(false);
|
||||
} catch (err) {
|
||||
console.error('Failed to update content:', err);
|
||||
console.error("Failed to update content:", err);
|
||||
}
|
||||
};
|
||||
|
||||
const handleDelete = async () => {
|
||||
if (!confirm('Are you sure you want to delete this content?')) return;
|
||||
if (!confirm("Are you sure you want to delete this content?")) return;
|
||||
|
||||
try {
|
||||
const contentsAPI = new ContentsAPI(client);
|
||||
await contentsAPI.deleteContent(vectorStoreId, fileId, contentId);
|
||||
router.push(`/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents`);
|
||||
router.push(
|
||||
`/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents`
|
||||
);
|
||||
} catch (err) {
|
||||
console.error('Failed to delete content:', err);
|
||||
console.error("Failed to delete content:", err);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -134,10 +154,19 @@ export default function ContentDetailPage() {
|
|||
|
||||
const breadcrumbSegments: BreadcrumbSegment[] = [
|
||||
{ label: "Vector Stores", href: "/logs/vector-stores" },
|
||||
{ label: store?.name || vectorStoreId, href: `/logs/vector-stores/${vectorStoreId}` },
|
||||
{
|
||||
label: store?.name || vectorStoreId,
|
||||
href: `/logs/vector-stores/${vectorStoreId}`,
|
||||
},
|
||||
{ label: "Files", href: `/logs/vector-stores/${vectorStoreId}` },
|
||||
{ label: fileId, href: `/logs/vector-stores/${vectorStoreId}/files/${fileId}` },
|
||||
{ label: "Contents", href: `/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents` },
|
||||
{
|
||||
label: fileId,
|
||||
href: `/logs/vector-stores/${vectorStoreId}/files/${fileId}`,
|
||||
},
|
||||
{
|
||||
label: "Contents",
|
||||
href: `/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents`,
|
||||
},
|
||||
{ label: contentId },
|
||||
];
|
||||
|
||||
|
@ -186,7 +215,7 @@ export default function ContentDetailPage() {
|
|||
{isEditing ? (
|
||||
<textarea
|
||||
value={editedContent}
|
||||
onChange={(e) => setEditedContent(e.target.value)}
|
||||
onChange={e => setEditedContent(e.target.value)}
|
||||
className="w-full h-64 p-3 border rounded-md resize-none font-mono text-sm"
|
||||
placeholder="Enter content..."
|
||||
/>
|
||||
|
@ -206,16 +235,23 @@ export default function ContentDetailPage() {
|
|||
<div className="flex gap-2">
|
||||
{isEditingEmbedding ? (
|
||||
<>
|
||||
<Button size="sm" onClick={() => {
|
||||
setIsEditingEmbedding(false);
|
||||
}}>
|
||||
<Button
|
||||
size="sm"
|
||||
onClick={() => {
|
||||
setIsEditingEmbedding(false);
|
||||
}}
|
||||
>
|
||||
<Save className="h-4 w-4 mr-1" />
|
||||
Save
|
||||
</Button>
|
||||
<Button size="sm" variant="outline" onClick={() => {
|
||||
setEditedEmbedding(content?.embedding || []);
|
||||
setIsEditingEmbedding(false);
|
||||
}}>
|
||||
<Button
|
||||
size="sm"
|
||||
variant="outline"
|
||||
onClick={() => {
|
||||
setEditedEmbedding(content?.embedding || []);
|
||||
setIsEditingEmbedding(false);
|
||||
}}
|
||||
>
|
||||
<X className="h-4 w-4 mr-1" />
|
||||
Cancel
|
||||
</Button>
|
||||
|
@ -237,14 +273,16 @@ export default function ContentDetailPage() {
|
|||
</p>
|
||||
<textarea
|
||||
value={JSON.stringify(editedEmbedding, null, 2)}
|
||||
onChange={(e) => {
|
||||
onChange={e => {
|
||||
try {
|
||||
const parsed = JSON.parse(e.target.value);
|
||||
if (Array.isArray(parsed) && parsed.every(v => typeof v === 'number')) {
|
||||
if (
|
||||
Array.isArray(parsed) &&
|
||||
parsed.every(v => typeof v === "number")
|
||||
) {
|
||||
setEditedEmbedding(parsed);
|
||||
}
|
||||
} catch {
|
||||
}
|
||||
} catch {}
|
||||
}}
|
||||
className="w-full h-32 p-3 border rounded-md resize-none font-mono text-xs"
|
||||
placeholder="Enter embedding as JSON array..."
|
||||
|
@ -259,8 +297,15 @@ export default function ContentDetailPage() {
|
|||
</div>
|
||||
<div className="p-3 bg-gray-50 dark:bg-gray-800 rounded-md max-h-32 overflow-y-auto">
|
||||
<pre className="whitespace-pre-wrap font-mono text-xs text-gray-900 dark:text-gray-100">
|
||||
[{content.embedding.slice(0, 20).map(v => v.toFixed(6)).join(', ')}
|
||||
{content.embedding.length > 20 ? `\n... and ${content.embedding.length - 20} more values` : ''}]
|
||||
[
|
||||
{content.embedding
|
||||
.slice(0, 20)
|
||||
.map(v => v.toFixed(6))
|
||||
.join(", ")}
|
||||
{content.embedding.length > 20
|
||||
? `\n... and ${content.embedding.length - 20} more values`
|
||||
: ""}
|
||||
]
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
|
@ -284,7 +329,7 @@ export default function ContentDetailPage() {
|
|||
<div key={key} className="flex gap-2">
|
||||
<Input
|
||||
value={key}
|
||||
onChange={(e) => {
|
||||
onChange={e => {
|
||||
const newMetadata = { ...editedMetadata };
|
||||
delete newMetadata[key];
|
||||
newMetadata[e.target.value] = value;
|
||||
|
@ -294,11 +339,13 @@ export default function ContentDetailPage() {
|
|||
className="flex-1"
|
||||
/>
|
||||
<Input
|
||||
value={typeof value === 'string' ? value : JSON.stringify(value)}
|
||||
onChange={(e) => {
|
||||
value={
|
||||
typeof value === "string" ? value : JSON.stringify(value)
|
||||
}
|
||||
onChange={e => {
|
||||
setEditedMetadata({
|
||||
...editedMetadata,
|
||||
[key]: e.target.value
|
||||
[key]: e.target.value,
|
||||
});
|
||||
}}
|
||||
placeholder="Value"
|
||||
|
@ -312,7 +359,7 @@ export default function ContentDetailPage() {
|
|||
onClick={() => {
|
||||
setEditedMetadata({
|
||||
...editedMetadata,
|
||||
['']: ''
|
||||
[""]: "",
|
||||
});
|
||||
}}
|
||||
>
|
||||
|
@ -325,7 +372,7 @@ export default function ContentDetailPage() {
|
|||
<div key={key} className="flex justify-between py-1">
|
||||
<span className="font-medium text-gray-600">{key}:</span>
|
||||
<span className="font-mono text-sm">
|
||||
{typeof value === 'string' ? value : JSON.stringify(value)}
|
||||
{typeof value === "string" ? value : JSON.stringify(value)}
|
||||
</span>
|
||||
</div>
|
||||
))}
|
||||
|
@ -351,15 +398,15 @@ export default function ContentDetailPage() {
|
|||
value={`${getTextFromContent(content.content).length} chars`}
|
||||
/>
|
||||
{content.metadata.chunk_window && (
|
||||
<PropertyItem
|
||||
label="Position"
|
||||
value={content.metadata.chunk_window}
|
||||
/>
|
||||
<PropertyItem label="Position" value={content.metadata.chunk_window} />
|
||||
)}
|
||||
{file && (
|
||||
<>
|
||||
<PropertyItem label="File Status" value={file.status} />
|
||||
<PropertyItem label="File Usage" value={`${file.usage_bytes} bytes`} />
|
||||
<PropertyItem
|
||||
label="File Usage"
|
||||
value={`${file.usage_bytes} bytes`}
|
||||
/>
|
||||
</>
|
||||
)}
|
||||
{store && (
|
||||
|
|
|
@ -18,7 +18,10 @@ import {
|
|||
PropertiesCard,
|
||||
PropertyItem,
|
||||
} from "@/components/layout/detail-layout";
|
||||
import { PageBreadcrumb, BreadcrumbSegment } from "@/components/layout/page-breadcrumb";
|
||||
import {
|
||||
PageBreadcrumb,
|
||||
BreadcrumbSegment,
|
||||
} from "@/components/layout/page-breadcrumb";
|
||||
import {
|
||||
Table,
|
||||
TableBody,
|
||||
|
@ -36,23 +39,21 @@ export default function ContentsListPage() {
|
|||
const fileId = params.fileId as string;
|
||||
const client = useAuthClient();
|
||||
|
||||
const getTextFromContent = (content: any): string => {
|
||||
if (typeof content === 'string') {
|
||||
const getTextFromContent = (content: unknown): string => {
|
||||
if (typeof content === "string") {
|
||||
return content;
|
||||
} else if (content && content.type === 'text') {
|
||||
} else if (content && content.type === "text") {
|
||||
return content.text;
|
||||
}
|
||||
return '';
|
||||
return "";
|
||||
};
|
||||
|
||||
const [store, setStore] = useState<VectorStore | null>(null);
|
||||
const [file, setFile] = useState<VectorStoreFile | null>(null);
|
||||
const [contents, setContents] = useState<VectorStoreContentItem[]>([]);
|
||||
const [isLoadingStore, setIsLoadingStore] = useState(true);
|
||||
const [isLoadingFile, setIsLoadingFile] = useState(true);
|
||||
const [isLoadingContents, setIsLoadingContents] = useState(true);
|
||||
const [errorStore, setErrorStore] = useState<Error | null>(null);
|
||||
const [errorFile, setErrorFile] = useState<Error | null>(null);
|
||||
const [errorContents, setErrorContents] = useState<Error | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
|
@ -65,7 +66,9 @@ export default function ContentsListPage() {
|
|||
const response = await client.vectorStores.retrieve(vectorStoreId);
|
||||
setStore(response as VectorStore);
|
||||
} catch (err) {
|
||||
setErrorStore(err instanceof Error ? err : new Error("Failed to load vector store."));
|
||||
setErrorStore(
|
||||
err instanceof Error ? err : new Error("Failed to load vector store.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingStore(false);
|
||||
}
|
||||
|
@ -80,10 +83,15 @@ export default function ContentsListPage() {
|
|||
setIsLoadingFile(true);
|
||||
setErrorFile(null);
|
||||
try {
|
||||
const response = await client.vectorStores.files.retrieve(vectorStoreId, fileId);
|
||||
const response = await client.vectorStores.files.retrieve(
|
||||
vectorStoreId,
|
||||
fileId
|
||||
);
|
||||
setFile(response as VectorStoreFile);
|
||||
} catch (err) {
|
||||
setErrorFile(err instanceof Error ? err : new Error("Failed to load file."));
|
||||
setErrorFile(
|
||||
err instanceof Error ? err : new Error("Failed to load file.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingFile(false);
|
||||
}
|
||||
|
@ -99,10 +107,16 @@ export default function ContentsListPage() {
|
|||
setErrorContents(null);
|
||||
try {
|
||||
const contentsAPI = new ContentsAPI(client);
|
||||
const contentsResponse = await contentsAPI.listContents(vectorStoreId, fileId, { limit: 100 });
|
||||
const contentsResponse = await contentsAPI.listContents(
|
||||
vectorStoreId,
|
||||
fileId,
|
||||
{ limit: 100 }
|
||||
);
|
||||
setContents(contentsResponse.data);
|
||||
} catch (err) {
|
||||
setErrorContents(err instanceof Error ? err : new Error("Failed to load contents."));
|
||||
setErrorContents(
|
||||
err instanceof Error ? err : new Error("Failed to load contents.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingContents(false);
|
||||
}
|
||||
|
@ -116,26 +130,36 @@ export default function ContentsListPage() {
|
|||
await contentsAPI.deleteContent(vectorStoreId, fileId, contentId);
|
||||
setContents(contents.filter(content => content.id !== contentId));
|
||||
} catch (err) {
|
||||
console.error('Failed to delete content:', err);
|
||||
console.error("Failed to delete content:", err);
|
||||
}
|
||||
};
|
||||
|
||||
const handleViewContent = (contentId: string) => {
|
||||
router.push(`/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents/${contentId}`);
|
||||
router.push(
|
||||
`/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents/${contentId}`
|
||||
);
|
||||
};
|
||||
|
||||
const title = `Contents in File: ${fileId}`;
|
||||
|
||||
const breadcrumbSegments: BreadcrumbSegment[] = [
|
||||
{ label: "Vector Stores", href: "/logs/vector-stores" },
|
||||
{ label: store?.name || vectorStoreId, href: `/logs/vector-stores/${vectorStoreId}` },
|
||||
{
|
||||
label: store?.name || vectorStoreId,
|
||||
href: `/logs/vector-stores/${vectorStoreId}`,
|
||||
},
|
||||
{ label: "Files", href: `/logs/vector-stores/${vectorStoreId}` },
|
||||
{ label: fileId, href: `/logs/vector-stores/${vectorStoreId}/files/${fileId}` },
|
||||
{
|
||||
label: fileId,
|
||||
href: `/logs/vector-stores/${vectorStoreId}/files/${fileId}`,
|
||||
},
|
||||
{ label: "Contents" },
|
||||
];
|
||||
|
||||
if (errorStore) {
|
||||
return <DetailErrorView title={title} id={vectorStoreId} error={errorStore} />;
|
||||
return (
|
||||
<DetailErrorView title={title} id={vectorStoreId} error={errorStore} />
|
||||
);
|
||||
}
|
||||
if (isLoadingStore) {
|
||||
return <DetailLoadingView title={title} />;
|
||||
|
@ -175,7 +199,7 @@ export default function ContentsListPage() {
|
|||
</TableRow>
|
||||
</TableHeader>
|
||||
<TableBody>
|
||||
{contents.map((content) => (
|
||||
{contents.map(content => (
|
||||
<TableRow key={content.id}>
|
||||
<TableCell className="font-mono text-xs">
|
||||
<Button
|
||||
|
@ -189,7 +213,10 @@ export default function ContentsListPage() {
|
|||
</TableCell>
|
||||
<TableCell>
|
||||
<div className="max-w-md">
|
||||
<p className="text-sm truncate" title={getTextFromContent(content.content)}>
|
||||
<p
|
||||
className="text-sm truncate"
|
||||
title={getTextFromContent(content.content)}
|
||||
>
|
||||
{getTextFromContent(content.content)}
|
||||
</p>
|
||||
</div>
|
||||
|
@ -197,12 +224,25 @@ export default function ContentsListPage() {
|
|||
<TableCell className="text-xs text-gray-500">
|
||||
{content.embedding && content.embedding.length > 0 ? (
|
||||
<div className="max-w-xs">
|
||||
<span className="font-mono text-xs bg-gray-100 dark:bg-gray-800 rounded px-1 py-0.5" title={`${content.embedding.length}D vector: [${content.embedding.slice(0, 3).map(v => v.toFixed(3)).join(', ')}...]`}>
|
||||
[{content.embedding.slice(0, 3).map(v => v.toFixed(3)).join(', ')}...] ({content.embedding.length}D)
|
||||
<span
|
||||
className="font-mono text-xs bg-gray-100 dark:bg-gray-800 rounded px-1 py-0.5"
|
||||
title={`${content.embedding.length}D vector: [${content.embedding
|
||||
.slice(0, 3)
|
||||
.map(v => v.toFixed(3))
|
||||
.join(", ")}...]`}
|
||||
>
|
||||
[
|
||||
{content.embedding
|
||||
.slice(0, 3)
|
||||
.map(v => v.toFixed(3))
|
||||
.join(", ")}
|
||||
...] ({content.embedding.length}D)
|
||||
</span>
|
||||
</div>
|
||||
) : (
|
||||
<span className="text-gray-400 dark:text-gray-500 italic">No embedding</span>
|
||||
<span className="text-gray-400 dark:text-gray-500 italic">
|
||||
No embedding
|
||||
</span>
|
||||
)}
|
||||
</TableCell>
|
||||
<TableCell className="text-xs text-gray-500">
|
||||
|
@ -211,7 +251,9 @@ export default function ContentsListPage() {
|
|||
: `${content.metadata.content_length || 0} chars`}
|
||||
</TableCell>
|
||||
<TableCell className="text-xs">
|
||||
{new Date(content.created_timestamp * 1000).toLocaleString()}
|
||||
{new Date(
|
||||
content.created_timestamp * 1000
|
||||
).toLocaleString()}
|
||||
</TableCell>
|
||||
<TableCell>
|
||||
<div className="flex gap-1">
|
||||
|
|
|
@ -4,9 +4,12 @@ import { useEffect, useState } from "react";
|
|||
import { useParams, useRouter } from "next/navigation";
|
||||
import { useAuthClient } from "@/hooks/use-auth-client";
|
||||
import type { VectorStore } from "llama-stack-client/resources/vector-stores/vector-stores";
|
||||
import type { VectorStoreFile, FileContentResponse } from "llama-stack-client/resources/vector-stores/files";
|
||||
import type {
|
||||
VectorStoreFile,
|
||||
FileContentResponse,
|
||||
} from "llama-stack-client/resources/vector-stores/files";
|
||||
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
|
||||
import { Skeleton } from '@/components/ui/skeleton';
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
import { Button } from "@/components/ui/button";
|
||||
import { List } from "lucide-react";
|
||||
import {
|
||||
|
@ -17,7 +20,10 @@ import {
|
|||
PropertiesCard,
|
||||
PropertyItem,
|
||||
} from "@/components/layout/detail-layout";
|
||||
import { PageBreadcrumb, BreadcrumbSegment } from "@/components/layout/page-breadcrumb";
|
||||
import {
|
||||
PageBreadcrumb,
|
||||
BreadcrumbSegment,
|
||||
} from "@/components/layout/page-breadcrumb";
|
||||
|
||||
export default function FileDetailPage() {
|
||||
const params = useParams();
|
||||
|
@ -46,7 +52,9 @@ export default function FileDetailPage() {
|
|||
const response = await client.vectorStores.retrieve(vectorStoreId);
|
||||
setStore(response as VectorStore);
|
||||
} catch (err) {
|
||||
setErrorStore(err instanceof Error ? err : new Error("Failed to load vector store."));
|
||||
setErrorStore(
|
||||
err instanceof Error ? err : new Error("Failed to load vector store.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingStore(false);
|
||||
}
|
||||
|
@ -61,10 +69,15 @@ export default function FileDetailPage() {
|
|||
setIsLoadingFile(true);
|
||||
setErrorFile(null);
|
||||
try {
|
||||
const response = await client.vectorStores.files.retrieve(vectorStoreId, fileId);
|
||||
const response = await client.vectorStores.files.retrieve(
|
||||
vectorStoreId,
|
||||
fileId
|
||||
);
|
||||
setFile(response as VectorStoreFile);
|
||||
} catch (err) {
|
||||
setErrorFile(err instanceof Error ? err : new Error("Failed to load file."));
|
||||
setErrorFile(
|
||||
err instanceof Error ? err : new Error("Failed to load file.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingFile(false);
|
||||
}
|
||||
|
@ -79,10 +92,15 @@ export default function FileDetailPage() {
|
|||
setIsLoadingContents(true);
|
||||
setErrorContents(null);
|
||||
try {
|
||||
const response = await client.vectorStores.files.content(vectorStoreId, fileId);
|
||||
const response = await client.vectorStores.files.content(
|
||||
vectorStoreId,
|
||||
fileId
|
||||
);
|
||||
setContents(response);
|
||||
} catch (err) {
|
||||
setErrorContents(err instanceof Error ? err : new Error("Failed to load contents."));
|
||||
setErrorContents(
|
||||
err instanceof Error ? err : new Error("Failed to load contents.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingContents(false);
|
||||
}
|
||||
|
@ -91,20 +109,27 @@ export default function FileDetailPage() {
|
|||
}, [vectorStoreId, fileId, client]);
|
||||
|
||||
const handleViewContents = () => {
|
||||
router.push(`/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents`);
|
||||
router.push(
|
||||
`/logs/vector-stores/${vectorStoreId}/files/${fileId}/contents`
|
||||
);
|
||||
};
|
||||
|
||||
const title = `File: ${fileId}`;
|
||||
|
||||
const breadcrumbSegments: BreadcrumbSegment[] = [
|
||||
{ label: "Vector Stores", href: "/logs/vector-stores" },
|
||||
{ label: store?.name || vectorStoreId, href: `/logs/vector-stores/${vectorStoreId}` },
|
||||
{
|
||||
label: store?.name || vectorStoreId,
|
||||
href: `/logs/vector-stores/${vectorStoreId}`,
|
||||
},
|
||||
{ label: "Files", href: `/logs/vector-stores/${vectorStoreId}` },
|
||||
{ label: fileId },
|
||||
];
|
||||
|
||||
if (errorStore) {
|
||||
return <DetailErrorView title={title} id={vectorStoreId} error={errorStore} />;
|
||||
return (
|
||||
<DetailErrorView title={title} id={vectorStoreId} error={errorStore} />
|
||||
);
|
||||
}
|
||||
if (isLoadingStore) {
|
||||
return <DetailLoadingView title={title} />;
|
||||
|
@ -136,19 +161,29 @@ export default function FileDetailPage() {
|
|||
<h3 className="text-lg font-medium mb-2">File Details</h3>
|
||||
<div className="grid grid-cols-2 gap-4 text-sm">
|
||||
<div>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">Status:</span>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">
|
||||
Status:
|
||||
</span>
|
||||
<span className="ml-2">{file.status}</span>
|
||||
</div>
|
||||
<div>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">Size:</span>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">
|
||||
Size:
|
||||
</span>
|
||||
<span className="ml-2">{file.usage_bytes} bytes</span>
|
||||
</div>
|
||||
<div>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">Created:</span>
|
||||
<span className="ml-2">{new Date(file.created_at * 1000).toLocaleString()}</span>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">
|
||||
Created:
|
||||
</span>
|
||||
<span className="ml-2">
|
||||
{new Date(file.created_at * 1000).toLocaleString()}
|
||||
</span>
|
||||
</div>
|
||||
<div>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">Content Strategy:</span>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">
|
||||
Content Strategy:
|
||||
</span>
|
||||
<span className="ml-2">{file.chunking_strategy.type}</span>
|
||||
</div>
|
||||
</div>
|
||||
|
@ -166,9 +201,7 @@ export default function FileDetailPage() {
|
|||
</div>
|
||||
</div>
|
||||
) : (
|
||||
<p className="text-gray-500 italic text-sm">
|
||||
File not found.
|
||||
</p>
|
||||
<p className="text-gray-500 italic text-sm">File not found.</p>
|
||||
)}
|
||||
</CardContent>
|
||||
</Card>
|
||||
|
@ -192,16 +225,27 @@ export default function FileDetailPage() {
|
|||
<div className="space-y-3">
|
||||
<div className="grid grid-cols-2 gap-4 text-sm">
|
||||
<div>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">Content Items:</span>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">
|
||||
Content Items:
|
||||
</span>
|
||||
<span className="ml-2">{contents.content.length}</span>
|
||||
</div>
|
||||
<div>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">Total Characters:</span>
|
||||
<span className="ml-2">{contents.content.reduce((total, item) => total + item.text.length, 0)}</span>
|
||||
<span className="font-medium text-gray-600 dark:text-gray-400">
|
||||
Total Characters:
|
||||
</span>
|
||||
<span className="ml-2">
|
||||
{contents.content.reduce(
|
||||
(total, item) => total + item.text.length,
|
||||
0
|
||||
)}
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
<div className="pt-2">
|
||||
<span className="text-sm font-medium text-gray-600 dark:text-gray-400">Preview:</span>
|
||||
<span className="text-sm font-medium text-gray-600 dark:text-gray-400">
|
||||
Preview:
|
||||
</span>
|
||||
<div className="mt-1 bg-gray-50 dark:bg-gray-800 rounded-md p-3">
|
||||
<p className="text-sm text-gray-900 dark:text-gray-100 line-clamp-3">
|
||||
{contents.content[0]?.text.substring(0, 200)}...
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
"use client";
|
||||
|
||||
import { useEffect, useState } from "react";
|
||||
import { useParams, useRouter } from "next/navigation";
|
||||
import { useParams } from "next/navigation";
|
||||
import { useAuthClient } from "@/hooks/use-auth-client";
|
||||
import type { VectorStore } from "llama-stack-client/resources/vector-stores/vector-stores";
|
||||
import type { VectorStoreFile } from "llama-stack-client/resources/vector-stores/files";
|
||||
|
@ -11,7 +11,6 @@ export default function VectorStoreDetailPage() {
|
|||
const params = useParams();
|
||||
const id = params.id as string;
|
||||
const client = useAuthClient();
|
||||
const router = useRouter();
|
||||
|
||||
const [store, setStore] = useState<VectorStore | null>(null);
|
||||
const [files, setFiles] = useState<VectorStoreFile[]>([]);
|
||||
|
@ -34,9 +33,7 @@ export default function VectorStoreDetailPage() {
|
|||
setStore(response as VectorStore);
|
||||
} catch (err) {
|
||||
setErrorStore(
|
||||
err instanceof Error
|
||||
? err
|
||||
: new Error("Failed to load vector store."),
|
||||
err instanceof Error ? err : new Error("Failed to load vector store.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingStore(false);
|
||||
|
@ -55,18 +52,18 @@ export default function VectorStoreDetailPage() {
|
|||
setIsLoadingFiles(true);
|
||||
setErrorFiles(null);
|
||||
try {
|
||||
const result = await client.vectorStores.files.list(id as any);
|
||||
setFiles((result as any).data);
|
||||
const result = await client.vectorStores.files.list(id);
|
||||
setFiles((result as { data: VectorStoreFile[] }).data);
|
||||
} catch (err) {
|
||||
setErrorFiles(
|
||||
err instanceof Error ? err : new Error("Failed to load files."),
|
||||
err instanceof Error ? err : new Error("Failed to load files.")
|
||||
);
|
||||
} finally {
|
||||
setIsLoadingFiles(false);
|
||||
}
|
||||
};
|
||||
fetchFiles();
|
||||
}, [id]);
|
||||
}, [id, client.vectorStores.files]);
|
||||
|
||||
return (
|
||||
<VectorStoreDetailView
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
"use client";
|
||||
|
||||
import React from "react";
|
||||
import { useAuthClient } from "@/hooks/use-auth-client";
|
||||
import type {
|
||||
ListVectorStoresResponse,
|
||||
VectorStore,
|
||||
|
@ -12,7 +11,6 @@ import { Button } from "@/components/ui/button";
|
|||
import {
|
||||
Table,
|
||||
TableBody,
|
||||
TableCaption,
|
||||
TableCell,
|
||||
TableHead,
|
||||
TableHeader,
|
||||
|
@ -21,7 +19,6 @@ import {
|
|||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
|
||||
export default function VectorStoresPage() {
|
||||
const client = useAuthClient();
|
||||
const router = useRouter();
|
||||
const {
|
||||
data: stores,
|
||||
|
@ -37,7 +34,7 @@ export default function VectorStoresPage() {
|
|||
after: params.after,
|
||||
limit: params.limit,
|
||||
order: params.order,
|
||||
} as any);
|
||||
} as Parameters<typeof client.vectorStores.list>[0]);
|
||||
return response as ListVectorStoresResponse;
|
||||
},
|
||||
errorMessagePrefix: "vector stores",
|
||||
|
@ -53,11 +50,11 @@ export default function VectorStoresPage() {
|
|||
const renderContent = () => {
|
||||
if (status === "loading") {
|
||||
return (
|
||||
<div className="space-y-2">
|
||||
<Skeleton className="h-8 w-full"/>
|
||||
<Skeleton className="h-4 w-full"/>
|
||||
<Skeleton className="h-4 w-full"/>
|
||||
</div>
|
||||
<div className="space-y-2">
|
||||
<Skeleton className="h-8 w-full" />
|
||||
<Skeleton className="h-4 w-full" />
|
||||
<Skeleton className="h-4 w-full" />
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
|
@ -70,72 +67,72 @@ export default function VectorStoresPage() {
|
|||
}
|
||||
|
||||
return (
|
||||
<div className="overflow-auto flex-1 min-h-0">
|
||||
<Table>
|
||||
<TableHeader>
|
||||
<TableRow>
|
||||
<TableHead>ID</TableHead>
|
||||
<TableHead>Name</TableHead>
|
||||
<TableHead>Created</TableHead>
|
||||
<TableHead>Completed</TableHead>
|
||||
<TableHead>Cancelled</TableHead>
|
||||
<TableHead>Failed</TableHead>
|
||||
<TableHead>In Progress</TableHead>
|
||||
<TableHead>Total</TableHead>
|
||||
<TableHead>Usage Bytes</TableHead>
|
||||
<TableHead>Provider ID</TableHead>
|
||||
<TableHead>Provider Vector DB ID</TableHead>
|
||||
</TableRow>
|
||||
</TableHeader>
|
||||
<TableBody>
|
||||
{stores.map((store) => {
|
||||
const fileCounts = store.file_counts;
|
||||
const metadata = store.metadata || {};
|
||||
const providerId = metadata.provider_id ?? "";
|
||||
const providerDbId = metadata.provider_vector_db_id ?? "";
|
||||
<div className="overflow-auto flex-1 min-h-0">
|
||||
<Table>
|
||||
<TableHeader>
|
||||
<TableRow>
|
||||
<TableHead>ID</TableHead>
|
||||
<TableHead>Name</TableHead>
|
||||
<TableHead>Created</TableHead>
|
||||
<TableHead>Completed</TableHead>
|
||||
<TableHead>Cancelled</TableHead>
|
||||
<TableHead>Failed</TableHead>
|
||||
<TableHead>In Progress</TableHead>
|
||||
<TableHead>Total</TableHead>
|
||||
<TableHead>Usage Bytes</TableHead>
|
||||
<TableHead>Provider ID</TableHead>
|
||||
<TableHead>Provider Vector DB ID</TableHead>
|
||||
</TableRow>
|
||||
</TableHeader>
|
||||
<TableBody>
|
||||
{stores.map(store => {
|
||||
const fileCounts = store.file_counts;
|
||||
const metadata = store.metadata || {};
|
||||
const providerId = metadata.provider_id ?? "";
|
||||
const providerDbId = metadata.provider_vector_db_id ?? "";
|
||||
|
||||
return (
|
||||
<TableRow
|
||||
key={store.id}
|
||||
onClick={() => router.push(`/logs/vector-stores/${store.id}`)}
|
||||
className="cursor-pointer hover:bg-muted/50"
|
||||
return (
|
||||
<TableRow
|
||||
key={store.id}
|
||||
onClick={() => router.push(`/logs/vector-stores/${store.id}`)}
|
||||
className="cursor-pointer hover:bg-muted/50"
|
||||
>
|
||||
<TableCell>
|
||||
<Button
|
||||
variant="link"
|
||||
className="p-0 h-auto font-mono text-blue-600 hover:text-blue-800 dark:text-blue-400 dark:hover:text-blue-300"
|
||||
onClick={() =>
|
||||
router.push(`/logs/vector-stores/${store.id}`)
|
||||
}
|
||||
>
|
||||
<TableCell>
|
||||
<Button
|
||||
variant="link"
|
||||
className="p-0 h-auto font-mono text-blue-600 hover:text-blue-800 dark:text-blue-400 dark:hover:text-blue-300"
|
||||
onClick={() =>
|
||||
router.push(`/logs/vector-stores/${store.id}`)
|
||||
}
|
||||
>
|
||||
{store.id}
|
||||
</Button>
|
||||
</TableCell>
|
||||
<TableCell>{store.name}</TableCell>
|
||||
<TableCell>
|
||||
{new Date(store.created_at * 1000).toLocaleString()}
|
||||
</TableCell>
|
||||
<TableCell>{fileCounts.completed}</TableCell>
|
||||
<TableCell>{fileCounts.cancelled}</TableCell>
|
||||
<TableCell>{fileCounts.failed}</TableCell>
|
||||
<TableCell>{fileCounts.in_progress}</TableCell>
|
||||
<TableCell>{fileCounts.total}</TableCell>
|
||||
<TableCell>{store.usage_bytes}</TableCell>
|
||||
<TableCell>{providerId}</TableCell>
|
||||
<TableCell>{providerDbId}</TableCell>
|
||||
</TableRow>
|
||||
);
|
||||
})}
|
||||
</TableBody>
|
||||
</Table>
|
||||
</div>
|
||||
{store.id}
|
||||
</Button>
|
||||
</TableCell>
|
||||
<TableCell>{store.name}</TableCell>
|
||||
<TableCell>
|
||||
{new Date(store.created_at * 1000).toLocaleString()}
|
||||
</TableCell>
|
||||
<TableCell>{fileCounts.completed}</TableCell>
|
||||
<TableCell>{fileCounts.cancelled}</TableCell>
|
||||
<TableCell>{fileCounts.failed}</TableCell>
|
||||
<TableCell>{fileCounts.in_progress}</TableCell>
|
||||
<TableCell>{fileCounts.total}</TableCell>
|
||||
<TableCell>{store.usage_bytes}</TableCell>
|
||||
<TableCell>{providerId}</TableCell>
|
||||
<TableCell>{providerDbId}</TableCell>
|
||||
</TableRow>
|
||||
);
|
||||
})}
|
||||
</TableBody>
|
||||
</Table>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="space-y-4">
|
||||
<h1 className="text-2xl font-semibold">Vector Stores</h1>
|
||||
{renderContent()}
|
||||
</div>
|
||||
<div className="space-y-4">
|
||||
<h1 className="text-2xl font-semibold">Vector Stores</h1>
|
||||
{renderContent()}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
|
|
@ -14,7 +14,7 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={true}
|
||||
error={null}
|
||||
id="test-id"
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
// Use the data-slot attribute for Skeletons
|
||||
const skeletons = container.querySelectorAll('[data-slot="skeleton"]');
|
||||
|
@ -28,10 +28,10 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={false}
|
||||
error={{ name: "Error", message: "Network Error" }}
|
||||
id="err-id"
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
expect(
|
||||
screen.getByText(/Error loading details for ID err-id: Network Error/),
|
||||
screen.getByText(/Error loading details for ID err-id: Network Error/)
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -42,11 +42,11 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={false}
|
||||
error={{ name: "Error", message: "" }}
|
||||
id="err-id"
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
// Use regex to match the error message regardless of whitespace
|
||||
expect(
|
||||
screen.getByText(/Error loading details for ID\s*err-id\s*:/),
|
||||
screen.getByText(/Error loading details for ID\s*err-id\s*:/)
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -57,11 +57,11 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={false}
|
||||
error={{} as Error}
|
||||
id="err-id"
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
// Use regex to match the error message regardless of whitespace
|
||||
expect(
|
||||
screen.getByText(/Error loading details for ID\s*err-id\s*:/),
|
||||
screen.getByText(/Error loading details for ID\s*err-id\s*:/)
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -72,10 +72,10 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={false}
|
||||
error={null}
|
||||
id="notfound-id"
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
expect(
|
||||
screen.getByText("No details found for ID: notfound-id."),
|
||||
screen.getByText("No details found for ID: notfound-id.")
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -100,7 +100,7 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={false}
|
||||
error={null}
|
||||
id={mockCompletion.id}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
// Input
|
||||
expect(screen.getByText("Input")).toBeInTheDocument();
|
||||
|
@ -112,7 +112,7 @@ describe("ChatCompletionDetailView", () => {
|
|||
expect(screen.getByText("Properties")).toBeInTheDocument();
|
||||
expect(screen.getByText("Created:")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString()),
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString())
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("ID:")).toBeInTheDocument();
|
||||
expect(screen.getByText("comp_123")).toBeInTheDocument();
|
||||
|
@ -150,7 +150,7 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={false}
|
||||
error={null}
|
||||
id={mockCompletion.id}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
// Output should include the tool call block (should be present twice: input and output)
|
||||
const toolCallLabels = screen.getAllByText("Tool Call");
|
||||
|
@ -178,13 +178,13 @@ describe("ChatCompletionDetailView", () => {
|
|||
isLoading={false}
|
||||
error={null}
|
||||
id={mockCompletion.id}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
// Input section should be present but empty
|
||||
expect(screen.getByText("Input")).toBeInTheDocument();
|
||||
// Output section should show fallback message
|
||||
expect(
|
||||
screen.getByText("No message found in assistant's choice."),
|
||||
screen.getByText("No message found in assistant's choice.")
|
||||
).toBeInTheDocument();
|
||||
// Properties should show N/A for finish reason
|
||||
expect(screen.getByText("Finish Reason:")).toBeInTheDocument();
|
||||
|
|
|
@ -53,14 +53,14 @@ export function ChatCompletionDetailView({
|
|||
{completion.choices?.[0]?.message?.tool_calls &&
|
||||
Array.isArray(completion.choices[0].message.tool_calls) &&
|
||||
!completion.input_messages?.some(
|
||||
(im) =>
|
||||
im =>
|
||||
im.role === "assistant" &&
|
||||
im.tool_calls &&
|
||||
Array.isArray(im.tool_calls) &&
|
||||
im.tool_calls.length > 0,
|
||||
im.tool_calls.length > 0
|
||||
)
|
||||
? completion.choices[0].message.tool_calls.map(
|
||||
(toolCall: any, index: number) => {
|
||||
(toolCall: { function?: { name?: string } }, index: number) => {
|
||||
const assistantToolCallMessage: ChatMessage = {
|
||||
role: "assistant",
|
||||
tool_calls: [toolCall],
|
||||
|
@ -72,7 +72,7 @@ export function ChatCompletionDetailView({
|
|||
message={assistantToolCallMessage}
|
||||
/>
|
||||
);
|
||||
},
|
||||
}
|
||||
)
|
||||
: null}
|
||||
</CardContent>
|
||||
|
@ -89,7 +89,7 @@ export function ChatCompletionDetailView({
|
|||
/>
|
||||
) : (
|
||||
<p className="text-gray-500 italic text-sm">
|
||||
No message found in assistant's choice.
|
||||
No message found in assistant's choice.
|
||||
</p>
|
||||
)}
|
||||
</CardContent>
|
||||
|
@ -120,13 +120,18 @@ export function ChatCompletionDetailView({
|
|||
value={
|
||||
<div>
|
||||
<ul className="list-disc list-inside pl-4 mt-1">
|
||||
{toolCalls.map((toolCall: any, index: number) => (
|
||||
<li key={index}>
|
||||
<span className="text-gray-900 font-medium">
|
||||
{toolCall.function?.name || "N/A"}
|
||||
</span>
|
||||
</li>
|
||||
))}
|
||||
{toolCalls.map(
|
||||
(
|
||||
toolCall: { function?: { name?: string } },
|
||||
index: number
|
||||
) => (
|
||||
<li key={index}>
|
||||
<span className="text-gray-900 font-medium">
|
||||
{toolCall.function?.name || "N/A"}
|
||||
</span>
|
||||
</li>
|
||||
)
|
||||
)}
|
||||
</ul>
|
||||
</div>
|
||||
}
|
||||
|
|
|
@ -83,7 +83,7 @@ describe("ChatCompletionsTable", () => {
|
|||
// Default pass-through implementations
|
||||
truncateText.mockImplementation((text: string | undefined) => text);
|
||||
extractTextFromContentPart.mockImplementation((content: unknown) =>
|
||||
typeof content === "string" ? content : "extracted text",
|
||||
typeof content === "string" ? content : "extracted text"
|
||||
);
|
||||
extractDisplayableText.mockImplementation((message: unknown) => {
|
||||
const msg = message as { content?: string };
|
||||
|
@ -138,7 +138,7 @@ describe("ChatCompletionsTable", () => {
|
|||
if (row) {
|
||||
fireEvent.click(row);
|
||||
expect(mockPush).toHaveBeenCalledWith(
|
||||
"/logs/chat-completions/completion_123",
|
||||
"/logs/chat-completions/completion_123"
|
||||
);
|
||||
} else {
|
||||
throw new Error('Row with "Test prompt" not found for router mock test.');
|
||||
|
@ -162,7 +162,7 @@ describe("ChatCompletionsTable", () => {
|
|||
expect(tableCaption).toBeInTheDocument();
|
||||
if (tableCaption) {
|
||||
const captionSkeleton = tableCaption.querySelector(
|
||||
'[data-slot="skeleton"]',
|
||||
'[data-slot="skeleton"]'
|
||||
);
|
||||
expect(captionSkeleton).toBeInTheDocument();
|
||||
}
|
||||
|
@ -172,7 +172,7 @@ describe("ChatCompletionsTable", () => {
|
|||
expect(tableBody).toBeInTheDocument();
|
||||
if (tableBody) {
|
||||
const bodySkeletons = tableBody.querySelectorAll(
|
||||
'[data-slot="skeleton"]',
|
||||
'[data-slot="skeleton"]'
|
||||
);
|
||||
expect(bodySkeletons.length).toBeGreaterThan(0);
|
||||
}
|
||||
|
@ -192,14 +192,14 @@ describe("ChatCompletionsTable", () => {
|
|||
|
||||
render(<ChatCompletionsTable {...defaultProps} />);
|
||||
expect(
|
||||
screen.getByText("Unable to load chat completions"),
|
||||
screen.getByText("Unable to load chat completions")
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(errorMessage)).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test.each([{ name: "Error", message: "" }, {}])(
|
||||
"renders default error message when error has no message",
|
||||
(errorObject) => {
|
||||
errorObject => {
|
||||
mockedUsePagination.mockReturnValue({
|
||||
data: [],
|
||||
status: "error",
|
||||
|
@ -210,14 +210,14 @@ describe("ChatCompletionsTable", () => {
|
|||
|
||||
render(<ChatCompletionsTable {...defaultProps} />);
|
||||
expect(
|
||||
screen.getByText("Unable to load chat completions"),
|
||||
screen.getByText("Unable to load chat completions")
|
||||
).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(
|
||||
"An unexpected error occurred while loading the data.",
|
||||
),
|
||||
"An unexpected error occurred while loading the data."
|
||||
)
|
||||
).toBeInTheDocument();
|
||||
},
|
||||
}
|
||||
);
|
||||
});
|
||||
|
||||
|
@ -225,7 +225,7 @@ describe("ChatCompletionsTable", () => {
|
|||
test('renders "No chat completions found." and no table when data array is empty', () => {
|
||||
render(<ChatCompletionsTable {...defaultProps} />);
|
||||
expect(
|
||||
screen.getByText("No chat completions found."),
|
||||
screen.getByText("No chat completions found.")
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Ensure that the table structure is NOT rendered in the empty state
|
||||
|
@ -292,7 +292,7 @@ describe("ChatCompletionsTable", () => {
|
|||
|
||||
// Table caption
|
||||
expect(
|
||||
screen.getByText("A list of your recent chat completions."),
|
||||
screen.getByText("A list of your recent chat completions.")
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Table headers
|
||||
|
@ -306,14 +306,14 @@ describe("ChatCompletionsTable", () => {
|
|||
expect(screen.getByText("Test output")).toBeInTheDocument();
|
||||
expect(screen.getByText("llama-test-model")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString()),
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString())
|
||||
).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText("Another input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Another output")).toBeInTheDocument();
|
||||
expect(screen.getByText("llama-another-model")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710001000 * 1000).toLocaleString()),
|
||||
screen.getByText(new Date(1710001000 * 1000).toLocaleString())
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
@ -328,7 +328,7 @@ describe("ChatCompletionsTable", () => {
|
|||
return typeof text === "string" && text.length > effectiveMaxLength
|
||||
? text.slice(0, effectiveMaxLength) + "..."
|
||||
: text;
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
const longInput =
|
||||
|
@ -368,7 +368,7 @@ describe("ChatCompletionsTable", () => {
|
|||
|
||||
// The truncated text should be present for both input and output
|
||||
const truncatedTexts = screen.getAllByText(
|
||||
longInput.slice(0, 10) + "...",
|
||||
longInput.slice(0, 10) + "..."
|
||||
);
|
||||
expect(truncatedTexts.length).toBe(2); // one for input, one for output
|
||||
});
|
||||
|
@ -420,7 +420,7 @@ describe("ChatCompletionsTable", () => {
|
|||
// Verify the extracted text appears in the table
|
||||
expect(screen.getByText("Extracted input")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText("Extracted output from assistant"),
|
||||
screen.getByText("Extracted output from assistant")
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
|
|
@ -5,6 +5,7 @@ import {
|
|||
UsePaginationOptions,
|
||||
ListChatCompletionsResponse,
|
||||
} from "@/lib/types";
|
||||
import { ListChatCompletionsParams } from "@/lib/llama-stack-client";
|
||||
import { LogsTable, LogTableRow } from "@/components/logs/logs-table";
|
||||
import {
|
||||
extractTextFromContentPart,
|
||||
|
@ -38,14 +39,14 @@ export function ChatCompletionsTable({
|
|||
limit: number;
|
||||
model?: string;
|
||||
order?: string;
|
||||
},
|
||||
}
|
||||
) => {
|
||||
const response = await client.chat.completions.list({
|
||||
after: params.after,
|
||||
limit: params.limit,
|
||||
...(params.model && { model: params.model }),
|
||||
...(params.order && { order: params.order }),
|
||||
} as any);
|
||||
} as ListChatCompletionsParams);
|
||||
|
||||
return response as ListChatCompletionsResponse;
|
||||
};
|
||||
|
|
|
@ -37,21 +37,26 @@ export function ChatMessageItem({ message }: ChatMessageItemProps) {
|
|||
) {
|
||||
return (
|
||||
<>
|
||||
{message.tool_calls.map((toolCall: any, index: number) => {
|
||||
const formattedToolCall = formatToolCallToString(toolCall);
|
||||
const toolCallContent = (
|
||||
<ToolCallBlock>
|
||||
{formattedToolCall || "Error: Could not display tool call"}
|
||||
</ToolCallBlock>
|
||||
);
|
||||
return (
|
||||
<MessageBlock
|
||||
key={index}
|
||||
label="Tool Call"
|
||||
content={toolCallContent}
|
||||
/>
|
||||
);
|
||||
})}
|
||||
{message.tool_calls.map(
|
||||
(
|
||||
toolCall: { function?: { name?: string; arguments?: unknown } },
|
||||
index: number
|
||||
) => {
|
||||
const formattedToolCall = formatToolCallToString(toolCall);
|
||||
const toolCallContent = (
|
||||
<ToolCallBlock>
|
||||
{formattedToolCall || "Error: Could not display tool call"}
|
||||
</ToolCallBlock>
|
||||
);
|
||||
return (
|
||||
<MessageBlock
|
||||
key={index}
|
||||
label="Tool Call"
|
||||
content={toolCallContent}
|
||||
/>
|
||||
);
|
||||
}
|
||||
)}
|
||||
</>
|
||||
);
|
||||
} else {
|
||||
|
|
|
@ -1,18 +1,18 @@
|
|||
"use client"
|
||||
"use client";
|
||||
|
||||
import React, { useMemo, useState } from "react"
|
||||
import { cva, type VariantProps } from "class-variance-authority"
|
||||
import { motion } from "framer-motion"
|
||||
import { Ban, ChevronRight, Code2, Loader2, Terminal } from "lucide-react"
|
||||
import React, { useMemo, useState } from "react";
|
||||
import { cva, type VariantProps } from "class-variance-authority";
|
||||
import { motion } from "framer-motion";
|
||||
import { Ban, ChevronRight, Code2, Loader2, Terminal } from "lucide-react";
|
||||
|
||||
import { cn } from "@/lib/utils"
|
||||
import { cn } from "@/lib/utils";
|
||||
import {
|
||||
Collapsible,
|
||||
CollapsibleContent,
|
||||
CollapsibleTrigger,
|
||||
} from "@/components/ui/collapsible"
|
||||
import { FilePreview } from "@/components/ui/file-preview"
|
||||
import { MarkdownRenderer } from "@/components/chat-playground/markdown-renderer"
|
||||
} from "@/components/ui/collapsible";
|
||||
import { FilePreview } from "@/components/ui/file-preview";
|
||||
import { MarkdownRenderer } from "@/components/chat-playground/markdown-renderer";
|
||||
|
||||
const chatBubbleVariants = cva(
|
||||
"group/message relative break-words rounded-lg p-3 text-sm sm:max-w-[70%]",
|
||||
|
@ -52,66 +52,66 @@ const chatBubbleVariants = cva(
|
|||
},
|
||||
],
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
type Animation = VariantProps<typeof chatBubbleVariants>["animation"]
|
||||
type Animation = VariantProps<typeof chatBubbleVariants>["animation"];
|
||||
|
||||
interface Attachment {
|
||||
name?: string
|
||||
contentType?: string
|
||||
url: string
|
||||
name?: string;
|
||||
contentType?: string;
|
||||
url: string;
|
||||
}
|
||||
|
||||
interface PartialToolCall {
|
||||
state: "partial-call"
|
||||
toolName: string
|
||||
state: "partial-call";
|
||||
toolName: string;
|
||||
}
|
||||
|
||||
interface ToolCall {
|
||||
state: "call"
|
||||
toolName: string
|
||||
state: "call";
|
||||
toolName: string;
|
||||
}
|
||||
|
||||
interface ToolResult {
|
||||
state: "result"
|
||||
toolName: string
|
||||
state: "result";
|
||||
toolName: string;
|
||||
result: {
|
||||
__cancelled?: boolean
|
||||
[key: string]: any
|
||||
}
|
||||
__cancelled?: boolean;
|
||||
[key: string]: unknown;
|
||||
};
|
||||
}
|
||||
|
||||
type ToolInvocation = PartialToolCall | ToolCall | ToolResult
|
||||
type ToolInvocation = PartialToolCall | ToolCall | ToolResult;
|
||||
|
||||
interface ReasoningPart {
|
||||
type: "reasoning"
|
||||
reasoning: string
|
||||
type: "reasoning";
|
||||
reasoning: string;
|
||||
}
|
||||
|
||||
interface ToolInvocationPart {
|
||||
type: "tool-invocation"
|
||||
toolInvocation: ToolInvocation
|
||||
type: "tool-invocation";
|
||||
toolInvocation: ToolInvocation;
|
||||
}
|
||||
|
||||
interface TextPart {
|
||||
type: "text"
|
||||
text: string
|
||||
type: "text";
|
||||
text: string;
|
||||
}
|
||||
|
||||
// For compatibility with AI SDK types, not used
|
||||
interface SourcePart {
|
||||
type: "source"
|
||||
source?: any
|
||||
type: "source";
|
||||
source?: unknown;
|
||||
}
|
||||
|
||||
interface FilePart {
|
||||
type: "file"
|
||||
mimeType: string
|
||||
data: string
|
||||
type: "file";
|
||||
mimeType: string;
|
||||
data: string;
|
||||
}
|
||||
|
||||
interface StepStartPart {
|
||||
type: "step-start"
|
||||
type: "step-start";
|
||||
}
|
||||
|
||||
type MessagePart =
|
||||
|
@ -120,22 +120,22 @@ type MessagePart =
|
|||
| ToolInvocationPart
|
||||
| SourcePart
|
||||
| FilePart
|
||||
| StepStartPart
|
||||
| StepStartPart;
|
||||
|
||||
export interface Message {
|
||||
id: string
|
||||
role: "user" | "assistant" | (string & {})
|
||||
content: string
|
||||
createdAt?: Date
|
||||
experimental_attachments?: Attachment[]
|
||||
toolInvocations?: ToolInvocation[]
|
||||
parts?: MessagePart[]
|
||||
id: string;
|
||||
role: "user" | "assistant" | (string & {});
|
||||
content: string;
|
||||
createdAt?: Date;
|
||||
experimental_attachments?: Attachment[];
|
||||
toolInvocations?: ToolInvocation[];
|
||||
parts?: MessagePart[];
|
||||
}
|
||||
|
||||
export interface ChatMessageProps extends Message {
|
||||
showTimeStamp?: boolean
|
||||
animation?: Animation
|
||||
actions?: React.ReactNode
|
||||
showTimeStamp?: boolean;
|
||||
animation?: Animation;
|
||||
actions?: React.ReactNode;
|
||||
}
|
||||
|
||||
export const ChatMessage: React.FC<ChatMessageProps> = ({
|
||||
|
@ -150,21 +150,21 @@ export const ChatMessage: React.FC<ChatMessageProps> = ({
|
|||
parts,
|
||||
}) => {
|
||||
const files = useMemo(() => {
|
||||
return experimental_attachments?.map((attachment) => {
|
||||
const dataArray = dataUrlToUint8Array(attachment.url)
|
||||
return experimental_attachments?.map(attachment => {
|
||||
const dataArray = dataUrlToUint8Array(attachment.url);
|
||||
const file = new File([dataArray], attachment.name ?? "Unknown", {
|
||||
type: attachment.contentType,
|
||||
})
|
||||
return file
|
||||
})
|
||||
}, [experimental_attachments])
|
||||
});
|
||||
return file;
|
||||
});
|
||||
}, [experimental_attachments]);
|
||||
|
||||
const isUser = role === "user"
|
||||
const isUser = role === "user";
|
||||
|
||||
const formattedTime = createdAt?.toLocaleTimeString("en-US", {
|
||||
hour: "2-digit",
|
||||
minute: "2-digit",
|
||||
})
|
||||
});
|
||||
|
||||
if (isUser) {
|
||||
return (
|
||||
|
@ -174,7 +174,7 @@ export const ChatMessage: React.FC<ChatMessageProps> = ({
|
|||
{files ? (
|
||||
<div className="mb-1 flex flex-wrap gap-2">
|
||||
{files.map((file, index) => {
|
||||
return <FilePreview file={file} key={index} />
|
||||
return <FilePreview file={file} key={index} />;
|
||||
})}
|
||||
</div>
|
||||
) : null}
|
||||
|
@ -195,7 +195,7 @@ export const ChatMessage: React.FC<ChatMessageProps> = ({
|
|||
</time>
|
||||
) : null}
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
if (parts && parts.length > 0) {
|
||||
|
@ -230,23 +230,23 @@ export const ChatMessage: React.FC<ChatMessageProps> = ({
|
|||
</time>
|
||||
) : null}
|
||||
</div>
|
||||
)
|
||||
);
|
||||
} else if (part.type === "reasoning") {
|
||||
return <ReasoningBlock key={`reasoning-${index}`} part={part} />
|
||||
return <ReasoningBlock key={`reasoning-${index}`} part={part} />;
|
||||
} else if (part.type === "tool-invocation") {
|
||||
return (
|
||||
<ToolCall
|
||||
key={`tool-${index}`}
|
||||
toolInvocations={[part.toolInvocation]}
|
||||
/>
|
||||
)
|
||||
);
|
||||
}
|
||||
return null
|
||||
})
|
||||
return null;
|
||||
});
|
||||
}
|
||||
|
||||
if (toolInvocations && toolInvocations.length > 0) {
|
||||
return <ToolCall toolInvocations={toolInvocations} />
|
||||
return <ToolCall toolInvocations={toolInvocations} />;
|
||||
}
|
||||
|
||||
return (
|
||||
|
@ -272,17 +272,17 @@ export const ChatMessage: React.FC<ChatMessageProps> = ({
|
|||
</time>
|
||||
) : null}
|
||||
</div>
|
||||
)
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
function dataUrlToUint8Array(data: string) {
|
||||
const base64 = data.split(",")[1]
|
||||
const buf = Buffer.from(base64, "base64")
|
||||
return new Uint8Array(buf)
|
||||
const base64 = data.split(",")[1];
|
||||
const buf = Buffer.from(base64, "base64");
|
||||
return new Uint8Array(buf);
|
||||
}
|
||||
|
||||
const ReasoningBlock = ({ part }: { part: ReasoningPart }) => {
|
||||
const [isOpen, setIsOpen] = useState(false)
|
||||
const [isOpen, setIsOpen] = useState(false);
|
||||
|
||||
return (
|
||||
<div className="mb-2 flex flex-col items-start sm:max-w-[70%]">
|
||||
|
@ -319,20 +319,20 @@ const ReasoningBlock = ({ part }: { part: ReasoningPart }) => {
|
|||
</CollapsibleContent>
|
||||
</Collapsible>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
function ToolCall({
|
||||
toolInvocations,
|
||||
}: Pick<ChatMessageProps, "toolInvocations">) {
|
||||
if (!toolInvocations?.length) return null
|
||||
if (!toolInvocations?.length) return null;
|
||||
|
||||
return (
|
||||
<div className="flex flex-col items-start gap-2">
|
||||
{toolInvocations.map((invocation, index) => {
|
||||
const isCancelled =
|
||||
invocation.state === "result" &&
|
||||
invocation.result.__cancelled === true
|
||||
invocation.result.__cancelled === true;
|
||||
|
||||
if (isCancelled) {
|
||||
return (
|
||||
|
@ -350,7 +350,7 @@ function ToolCall({
|
|||
</span>
|
||||
</span>
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
switch (invocation.state) {
|
||||
|
@ -373,7 +373,7 @@ function ToolCall({
|
|||
</span>
|
||||
<Loader2 className="h-3 w-3 animate-spin" />
|
||||
</div>
|
||||
)
|
||||
);
|
||||
case "result":
|
||||
return (
|
||||
<div
|
||||
|
@ -395,11 +395,11 @@ function ToolCall({
|
|||
{JSON.stringify(invocation.result, null, 2)}
|
||||
</pre>
|
||||
</div>
|
||||
)
|
||||
);
|
||||
default:
|
||||
return null
|
||||
return null;
|
||||
}
|
||||
})}
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
"use client"
|
||||
"use client";
|
||||
|
||||
import {
|
||||
forwardRef,
|
||||
|
@ -6,48 +6,48 @@ import {
|
|||
useRef,
|
||||
useState,
|
||||
type ReactElement,
|
||||
} from "react"
|
||||
import { ArrowDown, ThumbsDown, ThumbsUp } from "lucide-react"
|
||||
} from "react";
|
||||
import { ArrowDown, ThumbsDown, ThumbsUp } from "lucide-react";
|
||||
|
||||
import { cn } from "@/lib/utils"
|
||||
import { useAutoScroll } from "@/hooks/use-auto-scroll"
|
||||
import { Button } from "@/components/ui/button"
|
||||
import { type Message } from "@/components/chat-playground/chat-message"
|
||||
import { CopyButton } from "@/components/ui/copy-button"
|
||||
import { MessageInput } from "@/components/chat-playground/message-input"
|
||||
import { MessageList } from "@/components/chat-playground/message-list"
|
||||
import { PromptSuggestions } from "@/components/chat-playground/prompt-suggestions"
|
||||
import { cn } from "@/lib/utils";
|
||||
import { useAutoScroll } from "@/hooks/use-auto-scroll";
|
||||
import { Button } from "@/components/ui/button";
|
||||
import { type Message } from "@/components/chat-playground/chat-message";
|
||||
import { CopyButton } from "@/components/ui/copy-button";
|
||||
import { MessageInput } from "@/components/chat-playground/message-input";
|
||||
import { MessageList } from "@/components/chat-playground/message-list";
|
||||
import { PromptSuggestions } from "@/components/chat-playground/prompt-suggestions";
|
||||
|
||||
interface ChatPropsBase {
|
||||
handleSubmit: (
|
||||
event?: { preventDefault?: () => void },
|
||||
options?: { experimental_attachments?: FileList }
|
||||
) => void
|
||||
messages: Array<Message>
|
||||
input: string
|
||||
className?: string
|
||||
handleInputChange: React.ChangeEventHandler<HTMLTextAreaElement>
|
||||
isGenerating: boolean
|
||||
stop?: () => void
|
||||
) => void;
|
||||
messages: Array<Message>;
|
||||
input: string;
|
||||
className?: string;
|
||||
handleInputChange: React.ChangeEventHandler<HTMLTextAreaElement>;
|
||||
isGenerating: boolean;
|
||||
stop?: () => void;
|
||||
onRateResponse?: (
|
||||
messageId: string,
|
||||
rating: "thumbs-up" | "thumbs-down"
|
||||
) => void
|
||||
setMessages?: (messages: any[]) => void
|
||||
transcribeAudio?: (blob: Blob) => Promise<string>
|
||||
) => void;
|
||||
setMessages?: (messages: Message[]) => void;
|
||||
transcribeAudio?: (blob: Blob) => Promise<string>;
|
||||
}
|
||||
|
||||
interface ChatPropsWithoutSuggestions extends ChatPropsBase {
|
||||
append?: never
|
||||
suggestions?: never
|
||||
append?: never;
|
||||
suggestions?: never;
|
||||
}
|
||||
|
||||
interface ChatPropsWithSuggestions extends ChatPropsBase {
|
||||
append: (message: { role: "user"; content: string }) => void
|
||||
suggestions: string[]
|
||||
append: (message: { role: "user"; content: string }) => void;
|
||||
suggestions: string[];
|
||||
}
|
||||
|
||||
type ChatProps = ChatPropsWithoutSuggestions | ChatPropsWithSuggestions
|
||||
type ChatProps = ChatPropsWithoutSuggestions | ChatPropsWithSuggestions;
|
||||
|
||||
export function Chat({
|
||||
messages,
|
||||
|
@ -63,34 +63,34 @@ export function Chat({
|
|||
setMessages,
|
||||
transcribeAudio,
|
||||
}: ChatProps) {
|
||||
const lastMessage = messages.at(-1)
|
||||
const isEmpty = messages.length === 0
|
||||
const isTyping = lastMessage?.role === "user"
|
||||
const lastMessage = messages.at(-1);
|
||||
const isEmpty = messages.length === 0;
|
||||
const isTyping = lastMessage?.role === "user";
|
||||
|
||||
const messagesRef = useRef(messages)
|
||||
messagesRef.current = messages
|
||||
const messagesRef = useRef(messages);
|
||||
messagesRef.current = messages;
|
||||
|
||||
// Enhanced stop function that marks pending tool calls as cancelled
|
||||
const handleStop = useCallback(() => {
|
||||
stop?.()
|
||||
stop?.();
|
||||
|
||||
if (!setMessages) return
|
||||
if (!setMessages) return;
|
||||
|
||||
const latestMessages = [...messagesRef.current]
|
||||
const latestMessages = [...messagesRef.current];
|
||||
const lastAssistantMessage = latestMessages.findLast(
|
||||
(m) => m.role === "assistant"
|
||||
)
|
||||
m => m.role === "assistant"
|
||||
);
|
||||
|
||||
if (!lastAssistantMessage) return
|
||||
if (!lastAssistantMessage) return;
|
||||
|
||||
let needsUpdate = false
|
||||
let updatedMessage = { ...lastAssistantMessage }
|
||||
let needsUpdate = false;
|
||||
let updatedMessage = { ...lastAssistantMessage };
|
||||
|
||||
if (lastAssistantMessage.toolInvocations) {
|
||||
const updatedToolInvocations = lastAssistantMessage.toolInvocations.map(
|
||||
(toolInvocation) => {
|
||||
toolInvocation => {
|
||||
if (toolInvocation.state === "call") {
|
||||
needsUpdate = true
|
||||
needsUpdate = true;
|
||||
return {
|
||||
...toolInvocation,
|
||||
state: "result",
|
||||
|
@ -98,61 +98,66 @@ export function Chat({
|
|||
content: "Tool execution was cancelled",
|
||||
__cancelled: true, // Special marker to indicate cancellation
|
||||
},
|
||||
} as const
|
||||
} as const;
|
||||
}
|
||||
return toolInvocation
|
||||
return toolInvocation;
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
if (needsUpdate) {
|
||||
updatedMessage = {
|
||||
...updatedMessage,
|
||||
toolInvocations: updatedToolInvocations,
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
if (lastAssistantMessage.parts && lastAssistantMessage.parts.length > 0) {
|
||||
const updatedParts = lastAssistantMessage.parts.map((part: any) => {
|
||||
if (
|
||||
part.type === "tool-invocation" &&
|
||||
part.toolInvocation &&
|
||||
part.toolInvocation.state === "call"
|
||||
) {
|
||||
needsUpdate = true
|
||||
return {
|
||||
...part,
|
||||
toolInvocation: {
|
||||
...part.toolInvocation,
|
||||
state: "result",
|
||||
result: {
|
||||
content: "Tool execution was cancelled",
|
||||
__cancelled: true,
|
||||
const updatedParts = lastAssistantMessage.parts.map(
|
||||
(part: {
|
||||
type: string;
|
||||
toolInvocation?: { state: string; toolName: string };
|
||||
}) => {
|
||||
if (
|
||||
part.type === "tool-invocation" &&
|
||||
part.toolInvocation &&
|
||||
part.toolInvocation.state === "call"
|
||||
) {
|
||||
needsUpdate = true;
|
||||
return {
|
||||
...part,
|
||||
toolInvocation: {
|
||||
...part.toolInvocation,
|
||||
state: "result",
|
||||
result: {
|
||||
content: "Tool execution was cancelled",
|
||||
__cancelled: true,
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
return part;
|
||||
}
|
||||
return part
|
||||
})
|
||||
);
|
||||
|
||||
if (needsUpdate) {
|
||||
updatedMessage = {
|
||||
...updatedMessage,
|
||||
parts: updatedParts,
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
if (needsUpdate) {
|
||||
const messageIndex = latestMessages.findIndex(
|
||||
(m) => m.id === lastAssistantMessage.id
|
||||
)
|
||||
m => m.id === lastAssistantMessage.id
|
||||
);
|
||||
if (messageIndex !== -1) {
|
||||
latestMessages[messageIndex] = updatedMessage
|
||||
setMessages(latestMessages)
|
||||
latestMessages[messageIndex] = updatedMessage;
|
||||
setMessages(latestMessages);
|
||||
}
|
||||
}
|
||||
}, [stop, setMessages, messagesRef])
|
||||
}, [stop, setMessages, messagesRef]);
|
||||
|
||||
const messageOptions = useCallback(
|
||||
(message: Message) => ({
|
||||
|
@ -189,7 +194,7 @@ export function Chat({
|
|||
),
|
||||
}),
|
||||
[onRateResponse]
|
||||
)
|
||||
);
|
||||
|
||||
return (
|
||||
<ChatContainer className={className}>
|
||||
|
@ -237,15 +242,15 @@ export function Chat({
|
|||
</div>
|
||||
</div>
|
||||
</ChatContainer>
|
||||
)
|
||||
);
|
||||
}
|
||||
Chat.displayName = "Chat"
|
||||
Chat.displayName = "Chat";
|
||||
|
||||
export function ChatMessages({
|
||||
messages,
|
||||
children,
|
||||
}: React.PropsWithChildren<{
|
||||
messages: Message[]
|
||||
messages: Message[];
|
||||
}>) {
|
||||
const {
|
||||
containerRef,
|
||||
|
@ -253,7 +258,7 @@ export function ChatMessages({
|
|||
handleScroll,
|
||||
shouldAutoScroll,
|
||||
handleTouchStart,
|
||||
} = useAutoScroll([messages])
|
||||
} = useAutoScroll([messages]);
|
||||
|
||||
return (
|
||||
<div
|
||||
|
@ -281,7 +286,7 @@ export function ChatMessages({
|
|||
</div>
|
||||
)}
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
export const ChatContainer = forwardRef<
|
||||
|
@ -294,56 +299,56 @@ export const ChatContainer = forwardRef<
|
|||
className={cn("flex flex-col max-h-full w-full", className)}
|
||||
{...props}
|
||||
/>
|
||||
)
|
||||
})
|
||||
ChatContainer.displayName = "ChatContainer"
|
||||
);
|
||||
});
|
||||
ChatContainer.displayName = "ChatContainer";
|
||||
|
||||
interface ChatFormProps {
|
||||
className?: string
|
||||
isPending: boolean
|
||||
className?: string;
|
||||
isPending: boolean;
|
||||
handleSubmit: (
|
||||
event?: { preventDefault?: () => void },
|
||||
options?: { experimental_attachments?: FileList }
|
||||
) => void
|
||||
) => void;
|
||||
children: (props: {
|
||||
files: File[] | null
|
||||
setFiles: React.Dispatch<React.SetStateAction<File[] | null>>
|
||||
}) => ReactElement
|
||||
files: File[] | null;
|
||||
setFiles: React.Dispatch<React.SetStateAction<File[] | null>>;
|
||||
}) => ReactElement;
|
||||
}
|
||||
|
||||
export const ChatForm = forwardRef<HTMLFormElement, ChatFormProps>(
|
||||
({ children, handleSubmit, isPending, className }, ref) => {
|
||||
const [files, setFiles] = useState<File[] | null>(null)
|
||||
const [files, setFiles] = useState<File[] | null>(null);
|
||||
|
||||
const onSubmit = (event: React.FormEvent) => {
|
||||
// if (isPending) {
|
||||
// event.preventDefault()
|
||||
// return
|
||||
// }
|
||||
|
||||
if (!files) {
|
||||
handleSubmit(event)
|
||||
return
|
||||
if (isPending) {
|
||||
event.preventDefault();
|
||||
return;
|
||||
}
|
||||
|
||||
const fileList = createFileList(files)
|
||||
handleSubmit(event, { experimental_attachments: fileList })
|
||||
setFiles(null)
|
||||
}
|
||||
if (!files) {
|
||||
handleSubmit(event);
|
||||
return;
|
||||
}
|
||||
|
||||
const fileList = createFileList(files);
|
||||
handleSubmit(event, { experimental_attachments: fileList });
|
||||
setFiles(null);
|
||||
};
|
||||
|
||||
return (
|
||||
<form ref={ref} onSubmit={onSubmit} className={className}>
|
||||
{children({ files, setFiles })}
|
||||
</form>
|
||||
)
|
||||
);
|
||||
}
|
||||
)
|
||||
ChatForm.displayName = "ChatForm"
|
||||
);
|
||||
ChatForm.displayName = "ChatForm";
|
||||
|
||||
function createFileList(files: File[] | FileList): FileList {
|
||||
const dataTransfer = new DataTransfer()
|
||||
const dataTransfer = new DataTransfer();
|
||||
for (const file of Array.from(files)) {
|
||||
dataTransfer.items.add(file)
|
||||
dataTransfer.items.add(file);
|
||||
}
|
||||
return dataTransfer.files
|
||||
return dataTransfer.files;
|
||||
}
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
"use client"
|
||||
"use client";
|
||||
|
||||
import { AnimatePresence, motion } from "framer-motion"
|
||||
import { X } from "lucide-react"
|
||||
import { AnimatePresence, motion } from "framer-motion";
|
||||
import { X } from "lucide-react";
|
||||
|
||||
interface InterruptPromptProps {
|
||||
isOpen: boolean
|
||||
close: () => void
|
||||
isOpen: boolean;
|
||||
close: () => void;
|
||||
}
|
||||
|
||||
export function InterruptPrompt({ isOpen, close }: InterruptPromptProps) {
|
||||
|
@ -37,5 +37,5 @@ export function InterruptPrompt({ isOpen, close }: InterruptPromptProps) {
|
|||
</motion.div>
|
||||
)}
|
||||
</AnimatePresence>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
import React, { Suspense, useEffect, useState } from "react"
|
||||
import Markdown from "react-markdown"
|
||||
import remarkGfm from "remark-gfm"
|
||||
import React, { Suspense, useEffect, useState } from "react";
|
||||
import Markdown from "react-markdown";
|
||||
import remarkGfm from "remark-gfm";
|
||||
|
||||
import { cn } from "@/lib/utils"
|
||||
import { CopyButton } from "@/components/ui/copy-button"
|
||||
import { cn } from "@/lib/utils";
|
||||
import { CopyButton } from "@/components/ui/copy-button";
|
||||
|
||||
interface MarkdownRendererProps {
|
||||
children: string
|
||||
children: string;
|
||||
}
|
||||
|
||||
export function MarkdownRenderer({ children }: MarkdownRendererProps) {
|
||||
|
@ -16,34 +16,34 @@ export function MarkdownRenderer({ children }: MarkdownRendererProps) {
|
|||
{children}
|
||||
</Markdown>
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
interface HighlightedPre extends React.HTMLAttributes<HTMLPreElement> {
|
||||
children: string
|
||||
language: string
|
||||
children: string;
|
||||
language: string;
|
||||
}
|
||||
|
||||
const HighlightedPre = React.memo(
|
||||
({ children, language, ...props }: HighlightedPre) => {
|
||||
const [tokens, setTokens] = useState<any[] | null>(null)
|
||||
const [isSupported, setIsSupported] = useState(false)
|
||||
const [tokens, setTokens] = useState<unknown[] | null>(null);
|
||||
const [isSupported, setIsSupported] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
let mounted = true
|
||||
let mounted = true;
|
||||
|
||||
const loadAndHighlight = async () => {
|
||||
try {
|
||||
const { codeToTokens, bundledLanguages } = await import("shiki")
|
||||
const { codeToTokens, bundledLanguages } = await import("shiki");
|
||||
|
||||
if (!mounted) return
|
||||
if (!mounted) return;
|
||||
|
||||
if (!(language in bundledLanguages)) {
|
||||
setIsSupported(false)
|
||||
return
|
||||
setIsSupported(false);
|
||||
return;
|
||||
}
|
||||
|
||||
setIsSupported(true)
|
||||
setIsSupported(true);
|
||||
|
||||
const { tokens: highlightedTokens } = await codeToTokens(children, {
|
||||
lang: language as keyof typeof bundledLanguages,
|
||||
|
@ -52,31 +52,31 @@ const HighlightedPre = React.memo(
|
|||
light: "github-light",
|
||||
dark: "github-dark",
|
||||
},
|
||||
})
|
||||
});
|
||||
|
||||
if (mounted) {
|
||||
setTokens(highlightedTokens)
|
||||
setTokens(highlightedTokens);
|
||||
}
|
||||
} catch (error) {
|
||||
} catch {
|
||||
if (mounted) {
|
||||
setIsSupported(false)
|
||||
setIsSupported(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
loadAndHighlight()
|
||||
loadAndHighlight();
|
||||
|
||||
return () => {
|
||||
mounted = false
|
||||
}
|
||||
}, [children, language])
|
||||
mounted = false;
|
||||
};
|
||||
}, [children, language]);
|
||||
|
||||
if (!isSupported) {
|
||||
return <pre {...props}>{children}</pre>
|
||||
return <pre {...props}>{children}</pre>;
|
||||
}
|
||||
|
||||
if (!tokens) {
|
||||
return <pre {...props}>{children}</pre>
|
||||
return <pre {...props}>{children}</pre>;
|
||||
}
|
||||
|
||||
return (
|
||||
|
@ -89,7 +89,7 @@ const HighlightedPre = React.memo(
|
|||
const style =
|
||||
typeof token.htmlStyle === "string"
|
||||
? undefined
|
||||
: token.htmlStyle
|
||||
: token.htmlStyle;
|
||||
|
||||
return (
|
||||
<span
|
||||
|
@ -99,7 +99,7 @@ const HighlightedPre = React.memo(
|
|||
>
|
||||
{token.content}
|
||||
</span>
|
||||
)
|
||||
);
|
||||
})}
|
||||
</span>
|
||||
{lineIndex !== tokens.length - 1 && "\n"}
|
||||
|
@ -107,15 +107,15 @@ const HighlightedPre = React.memo(
|
|||
))}
|
||||
</code>
|
||||
</pre>
|
||||
)
|
||||
);
|
||||
}
|
||||
)
|
||||
HighlightedPre.displayName = "HighlightedCode"
|
||||
);
|
||||
HighlightedPre.displayName = "HighlightedCode";
|
||||
|
||||
interface CodeBlockProps extends React.HTMLAttributes<HTMLPreElement> {
|
||||
children: React.ReactNode
|
||||
className?: string
|
||||
language: string
|
||||
children: React.ReactNode;
|
||||
className?: string;
|
||||
language: string;
|
||||
}
|
||||
|
||||
const CodeBlock = ({
|
||||
|
@ -127,12 +127,12 @@ const CodeBlock = ({
|
|||
const code =
|
||||
typeof children === "string"
|
||||
? children
|
||||
: childrenTakeAllStringContents(children)
|
||||
: childrenTakeAllStringContents(children);
|
||||
|
||||
const preClass = cn(
|
||||
"overflow-x-scroll rounded-md border bg-background/50 p-4 font-mono text-sm [scrollbar-width:none]",
|
||||
className
|
||||
)
|
||||
);
|
||||
|
||||
return (
|
||||
<div className="group/code relative mb-4">
|
||||
|
@ -152,27 +152,27 @@ const CodeBlock = ({
|
|||
<CopyButton content={code} copyMessage="Copied code to clipboard" />
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
function childrenTakeAllStringContents(element: any): string {
|
||||
function childrenTakeAllStringContents(element: unknown): string {
|
||||
if (typeof element === "string") {
|
||||
return element
|
||||
return element;
|
||||
}
|
||||
|
||||
if (element?.props?.children) {
|
||||
let children = element.props.children
|
||||
const children = element.props.children;
|
||||
|
||||
if (Array.isArray(children)) {
|
||||
return children
|
||||
.map((child) => childrenTakeAllStringContents(child))
|
||||
.join("")
|
||||
.map(child => childrenTakeAllStringContents(child))
|
||||
.join("");
|
||||
} else {
|
||||
return childrenTakeAllStringContents(children)
|
||||
return childrenTakeAllStringContents(children);
|
||||
}
|
||||
}
|
||||
|
||||
return ""
|
||||
return "";
|
||||
}
|
||||
|
||||
const COMPONENTS = {
|
||||
|
@ -184,8 +184,14 @@ const COMPONENTS = {
|
|||
strong: withClass("strong", "font-semibold"),
|
||||
a: withClass("a", "text-primary underline underline-offset-2"),
|
||||
blockquote: withClass("blockquote", "border-l-2 border-primary pl-4"),
|
||||
code: ({ children, className, node, ...rest }: any) => {
|
||||
const match = /language-(\w+)/.exec(className || "")
|
||||
code: ({
|
||||
children,
|
||||
className,
|
||||
}: {
|
||||
children: React.ReactNode;
|
||||
className?: string;
|
||||
}) => {
|
||||
const match = /language-(\w+)/.exec(className || "");
|
||||
return match ? (
|
||||
<CodeBlock className={className} language={match[1]} {...rest}>
|
||||
{children}
|
||||
|
@ -199,9 +205,9 @@ const COMPONENTS = {
|
|||
>
|
||||
{children}
|
||||
</code>
|
||||
)
|
||||
);
|
||||
},
|
||||
pre: ({ children }: any) => children,
|
||||
pre: ({ children }: { children: React.ReactNode }) => children,
|
||||
ol: withClass("ol", "list-decimal space-y-2 pl-6"),
|
||||
ul: withClass("ul", "list-disc space-y-2 pl-6"),
|
||||
li: withClass("li", "my-1.5"),
|
||||
|
@ -220,14 +226,14 @@ const COMPONENTS = {
|
|||
tr: withClass("tr", "m-0 border-t p-0 even:bg-muted"),
|
||||
p: withClass("p", "whitespace-pre-wrap"),
|
||||
hr: withClass("hr", "border-foreground/20"),
|
||||
}
|
||||
};
|
||||
|
||||
function withClass(Tag: keyof JSX.IntrinsicElements, classes: string) {
|
||||
const Component = ({ node, ...props }: any) => (
|
||||
const Component = ({ ...props }: Record<string, unknown>) => (
|
||||
<Tag className={classes} {...props} />
|
||||
)
|
||||
Component.displayName = Tag
|
||||
return Component
|
||||
);
|
||||
Component.displayName = Tag;
|
||||
return Component;
|
||||
}
|
||||
|
||||
export default MarkdownRenderer
|
||||
export default MarkdownRenderer;
|
||||
|
|
|
@ -1,41 +1,41 @@
|
|||
"use client"
|
||||
"use client";
|
||||
|
||||
import React, { useEffect, useRef, useState } from "react"
|
||||
import { AnimatePresence, motion } from "framer-motion"
|
||||
import { ArrowUp, Info, Loader2, Mic, Paperclip, Square } from "lucide-react"
|
||||
import { omit } from "remeda"
|
||||
import React, { useEffect, useRef, useState } from "react";
|
||||
import { AnimatePresence, motion } from "framer-motion";
|
||||
import { ArrowUp, Info, Loader2, Mic, Paperclip, Square } from "lucide-react";
|
||||
import { omit } from "remeda";
|
||||
|
||||
import { cn } from "@/lib/utils"
|
||||
import { useAudioRecording } from "@/hooks/use-audio-recording"
|
||||
import { useAutosizeTextArea } from "@/hooks/use-autosize-textarea"
|
||||
import { AudioVisualizer } from "@/components/ui/audio-visualizer"
|
||||
import { Button } from "@/components/ui/button"
|
||||
import { FilePreview } from "@/components/ui/file-preview"
|
||||
import { InterruptPrompt } from "@/components/chat-playground/interrupt-prompt"
|
||||
import { cn } from "@/lib/utils";
|
||||
import { useAudioRecording } from "@/hooks/use-audio-recording";
|
||||
import { useAutosizeTextArea } from "@/hooks/use-autosize-textarea";
|
||||
import { AudioVisualizer } from "@/components/ui/audio-visualizer";
|
||||
import { Button } from "@/components/ui/button";
|
||||
import { FilePreview } from "@/components/ui/file-preview";
|
||||
import { InterruptPrompt } from "@/components/chat-playground/interrupt-prompt";
|
||||
|
||||
interface MessageInputBaseProps
|
||||
extends React.TextareaHTMLAttributes<HTMLTextAreaElement> {
|
||||
value: string
|
||||
submitOnEnter?: boolean
|
||||
stop?: () => void
|
||||
isGenerating: boolean
|
||||
enableInterrupt?: boolean
|
||||
transcribeAudio?: (blob: Blob) => Promise<string>
|
||||
value: string;
|
||||
submitOnEnter?: boolean;
|
||||
stop?: () => void;
|
||||
isGenerating: boolean;
|
||||
enableInterrupt?: boolean;
|
||||
transcribeAudio?: (blob: Blob) => Promise<string>;
|
||||
}
|
||||
|
||||
interface MessageInputWithoutAttachmentProps extends MessageInputBaseProps {
|
||||
allowAttachments?: false
|
||||
allowAttachments?: false;
|
||||
}
|
||||
|
||||
interface MessageInputWithAttachmentsProps extends MessageInputBaseProps {
|
||||
allowAttachments: true
|
||||
files: File[] | null
|
||||
setFiles: React.Dispatch<React.SetStateAction<File[] | null>>
|
||||
allowAttachments: true;
|
||||
files: File[] | null;
|
||||
setFiles: React.Dispatch<React.SetStateAction<File[] | null>>;
|
||||
}
|
||||
|
||||
type MessageInputProps =
|
||||
| MessageInputWithoutAttachmentProps
|
||||
| MessageInputWithAttachmentsProps
|
||||
| MessageInputWithAttachmentsProps;
|
||||
|
||||
export function MessageInput({
|
||||
placeholder = "Ask AI...",
|
||||
|
@ -48,8 +48,8 @@ export function MessageInput({
|
|||
transcribeAudio,
|
||||
...props
|
||||
}: MessageInputProps) {
|
||||
const [isDragging, setIsDragging] = useState(false)
|
||||
const [showInterruptPrompt, setShowInterruptPrompt] = useState(false)
|
||||
const [isDragging, setIsDragging] = useState(false);
|
||||
const [showInterruptPrompt, setShowInterruptPrompt] = useState(false);
|
||||
|
||||
const {
|
||||
isListening,
|
||||
|
@ -61,123 +61,124 @@ export function MessageInput({
|
|||
stopRecording,
|
||||
} = useAudioRecording({
|
||||
transcribeAudio,
|
||||
onTranscriptionComplete: (text) => {
|
||||
props.onChange?.({ target: { value: text } } as any)
|
||||
onTranscriptionComplete: text => {
|
||||
props.onChange?.({
|
||||
target: { value: text },
|
||||
} as React.ChangeEvent<HTMLTextAreaElement>);
|
||||
},
|
||||
})
|
||||
});
|
||||
|
||||
useEffect(() => {
|
||||
if (!isGenerating) {
|
||||
setShowInterruptPrompt(false)
|
||||
setShowInterruptPrompt(false);
|
||||
}
|
||||
}, [isGenerating])
|
||||
}, [isGenerating]);
|
||||
|
||||
const addFiles = (files: File[] | null) => {
|
||||
if (props.allowAttachments) {
|
||||
props.setFiles((currentFiles) => {
|
||||
props.setFiles(currentFiles => {
|
||||
if (currentFiles === null) {
|
||||
return files
|
||||
return files;
|
||||
}
|
||||
|
||||
if (files === null) {
|
||||
return currentFiles
|
||||
return currentFiles;
|
||||
}
|
||||
|
||||
return [...currentFiles, ...files]
|
||||
})
|
||||
return [...currentFiles, ...files];
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const onDragOver = (event: React.DragEvent) => {
|
||||
if (props.allowAttachments !== true) return
|
||||
event.preventDefault()
|
||||
setIsDragging(true)
|
||||
}
|
||||
if (props.allowAttachments !== true) return;
|
||||
event.preventDefault();
|
||||
setIsDragging(true);
|
||||
};
|
||||
|
||||
const onDragLeave = (event: React.DragEvent) => {
|
||||
if (props.allowAttachments !== true) return
|
||||
event.preventDefault()
|
||||
setIsDragging(false)
|
||||
}
|
||||
if (props.allowAttachments !== true) return;
|
||||
event.preventDefault();
|
||||
setIsDragging(false);
|
||||
};
|
||||
|
||||
const onDrop = (event: React.DragEvent) => {
|
||||
setIsDragging(false)
|
||||
if (props.allowAttachments !== true) return
|
||||
event.preventDefault()
|
||||
const dataTransfer = event.dataTransfer
|
||||
setIsDragging(false);
|
||||
if (props.allowAttachments !== true) return;
|
||||
event.preventDefault();
|
||||
const dataTransfer = event.dataTransfer;
|
||||
if (dataTransfer.files.length) {
|
||||
addFiles(Array.from(dataTransfer.files))
|
||||
addFiles(Array.from(dataTransfer.files));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const onPaste = (event: React.ClipboardEvent) => {
|
||||
const items = event.clipboardData?.items
|
||||
if (!items) return
|
||||
const items = event.clipboardData?.items;
|
||||
if (!items) return;
|
||||
|
||||
const text = event.clipboardData.getData("text")
|
||||
const text = event.clipboardData.getData("text");
|
||||
if (text && text.length > 500 && props.allowAttachments) {
|
||||
event.preventDefault()
|
||||
const blob = new Blob([text], { type: "text/plain" })
|
||||
event.preventDefault();
|
||||
const blob = new Blob([text], { type: "text/plain" });
|
||||
const file = new File([blob], "Pasted text", {
|
||||
type: "text/plain",
|
||||
lastModified: Date.now(),
|
||||
})
|
||||
addFiles([file])
|
||||
return
|
||||
});
|
||||
addFiles([file]);
|
||||
return;
|
||||
}
|
||||
|
||||
const files = Array.from(items)
|
||||
.map((item) => item.getAsFile())
|
||||
.filter((file) => file !== null)
|
||||
.map(item => item.getAsFile())
|
||||
.filter(file => file !== null);
|
||||
|
||||
if (props.allowAttachments && files.length > 0) {
|
||||
addFiles(files)
|
||||
addFiles(files);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const onKeyDown = (event: React.KeyboardEvent<HTMLTextAreaElement>) => {
|
||||
if (submitOnEnter && event.key === "Enter" && !event.shiftKey) {
|
||||
event.preventDefault()
|
||||
event.preventDefault();
|
||||
|
||||
if (isGenerating && stop && enableInterrupt) {
|
||||
if (showInterruptPrompt) {
|
||||
stop()
|
||||
setShowInterruptPrompt(false)
|
||||
event.currentTarget.form?.requestSubmit()
|
||||
stop();
|
||||
setShowInterruptPrompt(false);
|
||||
event.currentTarget.form?.requestSubmit();
|
||||
} else if (
|
||||
props.value ||
|
||||
(props.allowAttachments && props.files?.length)
|
||||
) {
|
||||
setShowInterruptPrompt(true)
|
||||
return
|
||||
setShowInterruptPrompt(true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
event.currentTarget.form?.requestSubmit()
|
||||
event.currentTarget.form?.requestSubmit();
|
||||
}
|
||||
|
||||
onKeyDownProp?.(event)
|
||||
}
|
||||
onKeyDownProp?.(event);
|
||||
};
|
||||
|
||||
const textAreaRef = useRef<HTMLTextAreaElement>(null)
|
||||
const [textAreaHeight, setTextAreaHeight] = useState<number>(0)
|
||||
const textAreaRef = useRef<HTMLTextAreaElement>(null);
|
||||
const [textAreaHeight, setTextAreaHeight] = useState<number>(0);
|
||||
|
||||
useEffect(() => {
|
||||
if (textAreaRef.current) {
|
||||
setTextAreaHeight(textAreaRef.current.offsetHeight)
|
||||
setTextAreaHeight(textAreaRef.current.offsetHeight);
|
||||
}
|
||||
}, [props.value])
|
||||
}, [props.value]);
|
||||
|
||||
const showFileList =
|
||||
props.allowAttachments && props.files && props.files.length > 0
|
||||
|
||||
props.allowAttachments && props.files && props.files.length > 0;
|
||||
|
||||
useAutosizeTextArea({
|
||||
ref: textAreaRef,
|
||||
maxHeight: 240,
|
||||
borderWidth: 1,
|
||||
dependencies: [props.value, showFileList],
|
||||
})
|
||||
});
|
||||
|
||||
return (
|
||||
<div
|
||||
|
@ -220,24 +221,24 @@ export function MessageInput({
|
|||
<div className="absolute inset-x-3 bottom-0 z-20 overflow-x-scroll py-3">
|
||||
<div className="flex space-x-3">
|
||||
<AnimatePresence mode="popLayout">
|
||||
{props.files?.map((file) => {
|
||||
{props.files?.map(file => {
|
||||
return (
|
||||
<FilePreview
|
||||
key={file.name + String(file.lastModified)}
|
||||
file={file}
|
||||
onRemove={() => {
|
||||
props.setFiles((files) => {
|
||||
if (!files) return null
|
||||
props.setFiles(files => {
|
||||
if (!files) return null;
|
||||
|
||||
const filtered = Array.from(files).filter(
|
||||
(f) => f !== file
|
||||
)
|
||||
if (filtered.length === 0) return null
|
||||
return filtered
|
||||
})
|
||||
f => f !== file
|
||||
);
|
||||
if (filtered.length === 0) return null;
|
||||
return filtered;
|
||||
});
|
||||
}}
|
||||
/>
|
||||
)
|
||||
);
|
||||
})}
|
||||
</AnimatePresence>
|
||||
</div>
|
||||
|
@ -256,8 +257,8 @@ export function MessageInput({
|
|||
aria-label="Attach a file"
|
||||
disabled={true}
|
||||
onClick={async () => {
|
||||
const files = await showFileUploadDialog()
|
||||
addFiles(files)
|
||||
const files = await showFileUploadDialog();
|
||||
addFiles(files);
|
||||
}}
|
||||
>
|
||||
<Paperclip className="h-4 w-4" />
|
||||
|
@ -308,12 +309,12 @@ export function MessageInput({
|
|||
onStopRecording={stopRecording}
|
||||
/>
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
MessageInput.displayName = "MessageInput"
|
||||
MessageInput.displayName = "MessageInput";
|
||||
|
||||
interface FileUploadOverlayProps {
|
||||
isDragging: boolean
|
||||
isDragging: boolean;
|
||||
}
|
||||
|
||||
function FileUploadOverlay({ isDragging }: FileUploadOverlayProps) {
|
||||
|
@ -333,29 +334,29 @@ function FileUploadOverlay({ isDragging }: FileUploadOverlayProps) {
|
|||
</motion.div>
|
||||
)}
|
||||
</AnimatePresence>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
function showFileUploadDialog() {
|
||||
const input = document.createElement("input")
|
||||
const input = document.createElement("input");
|
||||
|
||||
input.type = "file"
|
||||
input.multiple = true
|
||||
input.accept = "*/*"
|
||||
input.click()
|
||||
input.type = "file";
|
||||
input.multiple = true;
|
||||
input.accept = "*/*";
|
||||
input.click();
|
||||
|
||||
return new Promise<File[] | null>((resolve) => {
|
||||
input.onchange = (e) => {
|
||||
const files = (e.currentTarget as HTMLInputElement).files
|
||||
return new Promise<File[] | null>(resolve => {
|
||||
input.onchange = e => {
|
||||
const files = (e.currentTarget as HTMLInputElement).files;
|
||||
|
||||
if (files) {
|
||||
resolve(Array.from(files))
|
||||
return
|
||||
resolve(Array.from(files));
|
||||
return;
|
||||
}
|
||||
|
||||
resolve(null)
|
||||
}
|
||||
})
|
||||
resolve(null);
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
function TranscribingOverlay() {
|
||||
|
@ -385,12 +386,12 @@ function TranscribingOverlay() {
|
|||
Transcribing audio...
|
||||
</p>
|
||||
</motion.div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
interface RecordingPromptProps {
|
||||
isVisible: boolean
|
||||
onStopRecording: () => void
|
||||
isVisible: boolean;
|
||||
onStopRecording: () => void;
|
||||
}
|
||||
|
||||
function RecordingPrompt({ isVisible, onStopRecording }: RecordingPromptProps) {
|
||||
|
@ -418,15 +419,15 @@ function RecordingPrompt({ isVisible, onStopRecording }: RecordingPromptProps) {
|
|||
</motion.div>
|
||||
)}
|
||||
</AnimatePresence>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
interface RecordingControlsProps {
|
||||
isRecording: boolean
|
||||
isTranscribing: boolean
|
||||
audioStream: MediaStream | null
|
||||
textAreaHeight: number
|
||||
onStopRecording: () => void
|
||||
isRecording: boolean;
|
||||
isTranscribing: boolean;
|
||||
audioStream: MediaStream | null;
|
||||
textAreaHeight: number;
|
||||
onStopRecording: () => void;
|
||||
}
|
||||
|
||||
function RecordingControls({
|
||||
|
@ -448,7 +449,7 @@ function RecordingControls({
|
|||
onClick={onStopRecording}
|
||||
/>
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
if (isTranscribing) {
|
||||
|
@ -459,8 +460,8 @@ function RecordingControls({
|
|||
>
|
||||
<TranscribingOverlay />
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
return null
|
||||
return null;
|
||||
}
|
||||
|
|
|
@ -2,18 +2,18 @@ import {
|
|||
ChatMessage,
|
||||
type ChatMessageProps,
|
||||
type Message,
|
||||
} from "@/components/chat-playground/chat-message"
|
||||
import { TypingIndicator } from "@/components/chat-playground/typing-indicator"
|
||||
} from "@/components/chat-playground/chat-message";
|
||||
import { TypingIndicator } from "@/components/chat-playground/typing-indicator";
|
||||
|
||||
type AdditionalMessageOptions = Omit<ChatMessageProps, keyof Message>
|
||||
type AdditionalMessageOptions = Omit<ChatMessageProps, keyof Message>;
|
||||
|
||||
interface MessageListProps {
|
||||
messages: Message[]
|
||||
showTimeStamps?: boolean
|
||||
isTyping?: boolean
|
||||
messages: Message[];
|
||||
showTimeStamps?: boolean;
|
||||
isTyping?: boolean;
|
||||
messageOptions?:
|
||||
| AdditionalMessageOptions
|
||||
| ((message: Message) => AdditionalMessageOptions)
|
||||
| ((message: Message) => AdditionalMessageOptions);
|
||||
}
|
||||
|
||||
export function MessageList({
|
||||
|
@ -28,7 +28,7 @@ export function MessageList({
|
|||
const additionalOptions =
|
||||
typeof messageOptions === "function"
|
||||
? messageOptions(message)
|
||||
: messageOptions
|
||||
: messageOptions;
|
||||
|
||||
return (
|
||||
<ChatMessage
|
||||
|
@ -37,9 +37,9 @@ export function MessageList({
|
|||
{...message}
|
||||
{...additionalOptions}
|
||||
/>
|
||||
)
|
||||
);
|
||||
})}
|
||||
{isTyping && <TypingIndicator />}
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
interface PromptSuggestionsProps {
|
||||
label: string
|
||||
append: (message: { role: "user"; content: string }) => void
|
||||
suggestions: string[]
|
||||
label: string;
|
||||
append: (message: { role: "user"; content: string }) => void;
|
||||
suggestions: string[];
|
||||
}
|
||||
|
||||
export function PromptSuggestions({
|
||||
|
@ -13,7 +13,7 @@ export function PromptSuggestions({
|
|||
<div className="space-y-6">
|
||||
<h2 className="text-center text-2xl font-bold">{label}</h2>
|
||||
<div className="flex gap-6 text-sm">
|
||||
{suggestions.map((suggestion) => (
|
||||
{suggestions.map(suggestion => (
|
||||
<button
|
||||
key={suggestion}
|
||||
onClick={() => append({ role: "user", content: suggestion })}
|
||||
|
@ -24,5 +24,5 @@ export function PromptSuggestions({
|
|||
))}
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import { Dot } from "lucide-react"
|
||||
import { Dot } from "lucide-react";
|
||||
|
||||
export function TypingIndicator() {
|
||||
return (
|
||||
|
@ -11,5 +11,5 @@ export function TypingIndicator() {
|
|||
</div>
|
||||
</div>
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
|
|
@ -56,18 +56,19 @@ const manageItems = [
|
|||
},
|
||||
];
|
||||
|
||||
const optimizeItems: { title: string; url: string; icon: React.ElementType }[] = [
|
||||
const optimizeItems: { title: string; url: string; icon: React.ElementType }[] =
|
||||
[
|
||||
{
|
||||
title: "Evaluations",
|
||||
url: "",
|
||||
icon: Compass,
|
||||
title: "Evaluations",
|
||||
url: "",
|
||||
icon: Compass,
|
||||
},
|
||||
{
|
||||
title: "Fine-tuning",
|
||||
url: "",
|
||||
icon: Settings2,
|
||||
title: "Fine-tuning",
|
||||
url: "",
|
||||
icon: Settings2,
|
||||
},
|
||||
];
|
||||
];
|
||||
|
||||
interface SidebarItem {
|
||||
title: string;
|
||||
|
@ -79,7 +80,7 @@ export function AppSidebar() {
|
|||
const pathname = usePathname();
|
||||
|
||||
const renderSidebarItems = (items: SidebarItem[]) => {
|
||||
return items.map((item) => {
|
||||
return items.map(item => {
|
||||
const isActive = pathname.startsWith(item.url);
|
||||
return (
|
||||
<SidebarMenuItem key={item.title}>
|
||||
|
@ -88,14 +89,14 @@ export function AppSidebar() {
|
|||
className={cn(
|
||||
"justify-start",
|
||||
isActive &&
|
||||
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100",
|
||||
"bg-gray-200 dark:bg-gray-700 hover:bg-gray-200 dark:hover:bg-gray-700 text-gray-900 dark:text-gray-100"
|
||||
)}
|
||||
>
|
||||
<Link href={item.url}>
|
||||
<item.icon
|
||||
className={cn(
|
||||
isActive && "text-gray-900 dark:text-gray-100",
|
||||
"mr-2 h-4 w-4",
|
||||
"mr-2 h-4 w-4"
|
||||
)}
|
||||
/>
|
||||
<span>{item.title}</span>
|
||||
|
@ -106,46 +107,48 @@ export function AppSidebar() {
|
|||
});
|
||||
};
|
||||
|
||||
return (
|
||||
<Sidebar>
|
||||
<SidebarHeader>
|
||||
<Link href="/">Llama Stack</Link>
|
||||
</SidebarHeader>
|
||||
<SidebarContent>
|
||||
<SidebarGroup>
|
||||
<SidebarGroupLabel>Create</SidebarGroupLabel>
|
||||
<SidebarGroupContent>
|
||||
<SidebarMenu>{renderSidebarItems(createItems)}</SidebarMenu>
|
||||
</SidebarGroupContent>
|
||||
</SidebarGroup>
|
||||
return (
|
||||
<Sidebar>
|
||||
<SidebarHeader>
|
||||
<Link href="/">Llama Stack</Link>
|
||||
</SidebarHeader>
|
||||
<SidebarContent>
|
||||
<SidebarGroup>
|
||||
<SidebarGroupLabel>Create</SidebarGroupLabel>
|
||||
<SidebarGroupContent>
|
||||
<SidebarMenu>{renderSidebarItems(createItems)}</SidebarMenu>
|
||||
</SidebarGroupContent>
|
||||
</SidebarGroup>
|
||||
|
||||
<SidebarGroup>
|
||||
<SidebarGroupLabel>Manage</SidebarGroupLabel>
|
||||
<SidebarGroupContent>
|
||||
<SidebarMenu>{renderSidebarItems(manageItems)}</SidebarMenu>
|
||||
</SidebarGroupContent>
|
||||
</SidebarGroup>
|
||||
<SidebarGroup>
|
||||
<SidebarGroupLabel>Manage</SidebarGroupLabel>
|
||||
<SidebarGroupContent>
|
||||
<SidebarMenu>{renderSidebarItems(manageItems)}</SidebarMenu>
|
||||
</SidebarGroupContent>
|
||||
</SidebarGroup>
|
||||
|
||||
<SidebarGroup>
|
||||
<SidebarGroupLabel>Optimize</SidebarGroupLabel>
|
||||
<SidebarGroupContent>
|
||||
<SidebarMenu>
|
||||
{optimizeItems.map((item) => (
|
||||
<SidebarMenuItem key={item.title}>
|
||||
<SidebarMenuButton
|
||||
disabled
|
||||
className="justify-start opacity-60 cursor-not-allowed"
|
||||
>
|
||||
<item.icon className="mr-2 h-4 w-4" />
|
||||
<span>{item.title}</span>
|
||||
<span className="ml-2 text-xs text-gray-500">(Coming Soon)</span>
|
||||
</SidebarMenuButton>
|
||||
</SidebarMenuItem>
|
||||
))}
|
||||
</SidebarMenu>
|
||||
</SidebarGroupContent>
|
||||
</SidebarGroup>
|
||||
</SidebarContent>
|
||||
</Sidebar>
|
||||
<SidebarGroup>
|
||||
<SidebarGroupLabel>Optimize</SidebarGroupLabel>
|
||||
<SidebarGroupContent>
|
||||
<SidebarMenu>
|
||||
{optimizeItems.map(item => (
|
||||
<SidebarMenuItem key={item.title}>
|
||||
<SidebarMenuButton
|
||||
disabled
|
||||
className="justify-start opacity-60 cursor-not-allowed"
|
||||
>
|
||||
<item.icon className="mr-2 h-4 w-4" />
|
||||
<span>{item.title}</span>
|
||||
<span className="ml-2 text-xs text-gray-500">
|
||||
(Coming Soon)
|
||||
</span>
|
||||
</SidebarMenuButton>
|
||||
</SidebarMenuItem>
|
||||
))}
|
||||
</SidebarMenu>
|
||||
</SidebarGroupContent>
|
||||
</SidebarGroup>
|
||||
</SidebarContent>
|
||||
</Sidebar>
|
||||
);
|
||||
}
|
||||
|
|
|
@ -2,7 +2,7 @@ import React from "react";
|
|||
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
|
||||
export function DetailLoadingView({ title }: { title: string }) {
|
||||
export function DetailLoadingView() {
|
||||
return (
|
||||
<>
|
||||
<Skeleton className="h-8 w-3/4 mb-6" /> {/* Title Skeleton */}
|
||||
|
|
|
@ -67,7 +67,7 @@ describe("LogsTable Viewport Loading", () => {
|
|||
() => {
|
||||
expect(mockLoadMore).toHaveBeenCalled();
|
||||
},
|
||||
{ timeout: 300 },
|
||||
{ timeout: 300 }
|
||||
);
|
||||
|
||||
expect(mockLoadMore).toHaveBeenCalledTimes(1);
|
||||
|
@ -81,11 +81,11 @@ describe("LogsTable Viewport Loading", () => {
|
|||
{...defaultProps}
|
||||
status="loading-more"
|
||||
onLoadMore={mockLoadMore}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
// Wait for possible triggers
|
||||
await new Promise((resolve) => setTimeout(resolve, 300));
|
||||
await new Promise(resolve => setTimeout(resolve, 300));
|
||||
|
||||
expect(mockLoadMore).not.toHaveBeenCalled();
|
||||
});
|
||||
|
@ -94,15 +94,11 @@ describe("LogsTable Viewport Loading", () => {
|
|||
const mockLoadMore = jest.fn();
|
||||
|
||||
render(
|
||||
<LogsTable
|
||||
{...defaultProps}
|
||||
status="loading"
|
||||
onLoadMore={mockLoadMore}
|
||||
/>,
|
||||
<LogsTable {...defaultProps} status="loading" onLoadMore={mockLoadMore} />
|
||||
);
|
||||
|
||||
// Wait for possible triggers
|
||||
await new Promise((resolve) => setTimeout(resolve, 300));
|
||||
await new Promise(resolve => setTimeout(resolve, 300));
|
||||
|
||||
expect(mockLoadMore).not.toHaveBeenCalled();
|
||||
});
|
||||
|
@ -111,18 +107,18 @@ describe("LogsTable Viewport Loading", () => {
|
|||
const mockLoadMore = jest.fn();
|
||||
|
||||
render(
|
||||
<LogsTable {...defaultProps} hasMore={false} onLoadMore={mockLoadMore} />,
|
||||
<LogsTable {...defaultProps} hasMore={false} onLoadMore={mockLoadMore} />
|
||||
);
|
||||
|
||||
// Wait for possible triggers
|
||||
await new Promise((resolve) => setTimeout(resolve, 300));
|
||||
await new Promise(resolve => setTimeout(resolve, 300));
|
||||
|
||||
expect(mockLoadMore).not.toHaveBeenCalled();
|
||||
});
|
||||
|
||||
test("sentinel element should not be rendered when loading", () => {
|
||||
const { container } = render(
|
||||
<LogsTable {...defaultProps} status="loading-more" />,
|
||||
<LogsTable {...defaultProps} status="loading-more" />
|
||||
);
|
||||
|
||||
// Check that no sentinel row with height: 1 exists
|
||||
|
@ -132,7 +128,7 @@ describe("LogsTable Viewport Loading", () => {
|
|||
|
||||
test("sentinel element should be rendered when not loading and hasMore", () => {
|
||||
const { container } = render(
|
||||
<LogsTable {...defaultProps} hasMore={true} status="idle" />,
|
||||
<LogsTable {...defaultProps} hasMore={true} status="idle" />
|
||||
);
|
||||
|
||||
// Check that sentinel row exists
|
||||
|
|
|
@ -70,7 +70,7 @@ describe("LogsTable", () => {
|
|||
describe("Loading State", () => {
|
||||
test("renders skeleton UI when isLoading is true", () => {
|
||||
const { container } = render(
|
||||
<LogsTable {...defaultProps} status="loading" />,
|
||||
<LogsTable {...defaultProps} status="loading" />
|
||||
);
|
||||
|
||||
// Check for skeleton in the table caption
|
||||
|
@ -78,7 +78,7 @@ describe("LogsTable", () => {
|
|||
expect(tableCaption).toBeInTheDocument();
|
||||
if (tableCaption) {
|
||||
const captionSkeleton = tableCaption.querySelector(
|
||||
'[data-slot="skeleton"]',
|
||||
'[data-slot="skeleton"]'
|
||||
);
|
||||
expect(captionSkeleton).toBeInTheDocument();
|
||||
}
|
||||
|
@ -88,7 +88,7 @@ describe("LogsTable", () => {
|
|||
expect(tableBody).toBeInTheDocument();
|
||||
if (tableBody) {
|
||||
const bodySkeletons = tableBody.querySelectorAll(
|
||||
'[data-slot="skeleton"]',
|
||||
'[data-slot="skeleton"]'
|
||||
);
|
||||
expect(bodySkeletons.length).toBeGreaterThan(0);
|
||||
}
|
||||
|
@ -102,7 +102,7 @@ describe("LogsTable", () => {
|
|||
|
||||
test("renders correct number of skeleton rows", () => {
|
||||
const { container } = render(
|
||||
<LogsTable {...defaultProps} status="loading" />,
|
||||
<LogsTable {...defaultProps} status="loading" />
|
||||
);
|
||||
|
||||
const skeletonRows = container.querySelectorAll("tbody tr");
|
||||
|
@ -118,10 +118,10 @@ describe("LogsTable", () => {
|
|||
{...defaultProps}
|
||||
status="error"
|
||||
error={{ name: "Error", message: errorMessage } as Error}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
expect(
|
||||
screen.getByText("Unable to load chat completions"),
|
||||
screen.getByText("Unable to load chat completions")
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(errorMessage)).toBeInTheDocument();
|
||||
});
|
||||
|
@ -132,29 +132,25 @@ describe("LogsTable", () => {
|
|||
{...defaultProps}
|
||||
status="error"
|
||||
error={{ name: "Error", message: "" } as Error}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
expect(
|
||||
screen.getByText("Unable to load chat completions"),
|
||||
screen.getByText("Unable to load chat completions")
|
||||
).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(
|
||||
"An unexpected error occurred while loading the data.",
|
||||
),
|
||||
screen.getByText("An unexpected error occurred while loading the data.")
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test("renders default error message when error prop is an object without message", () => {
|
||||
render(
|
||||
<LogsTable {...defaultProps} status="error" error={{} as Error} />,
|
||||
<LogsTable {...defaultProps} status="error" error={{} as Error} />
|
||||
);
|
||||
expect(
|
||||
screen.getByText("Unable to load chat completions"),
|
||||
screen.getByText("Unable to load chat completions")
|
||||
).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(
|
||||
"An unexpected error occurred while loading the data.",
|
||||
),
|
||||
screen.getByText("An unexpected error occurred while loading the data.")
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -164,7 +160,7 @@ describe("LogsTable", () => {
|
|||
{...defaultProps}
|
||||
status="error"
|
||||
error={{ name: "Error", message: "Test error" } as Error}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
const table = screen.queryByRole("table");
|
||||
expect(table).not.toBeInTheDocument();
|
||||
|
@ -178,7 +174,7 @@ describe("LogsTable", () => {
|
|||
{...defaultProps}
|
||||
data={[]}
|
||||
emptyMessage="Custom empty message"
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
expect(screen.getByText("Custom empty message")).toBeInTheDocument();
|
||||
|
||||
|
@ -214,7 +210,7 @@ describe("LogsTable", () => {
|
|||
{...defaultProps}
|
||||
data={mockData}
|
||||
caption="Custom table caption"
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
// Table caption
|
||||
|
@ -311,8 +307,8 @@ describe("LogsTable", () => {
|
|||
// Verify truncated text is displayed
|
||||
const truncatedTexts = screen.getAllByText("This is a ...");
|
||||
expect(truncatedTexts).toHaveLength(2); // one for input, one for output
|
||||
truncatedTexts.forEach((textElement) =>
|
||||
expect(textElement).toBeInTheDocument(),
|
||||
truncatedTexts.forEach(textElement =>
|
||||
expect(textElement).toBeInTheDocument()
|
||||
);
|
||||
});
|
||||
|
||||
|
@ -332,12 +328,12 @@ describe("LogsTable", () => {
|
|||
|
||||
// Model name should not be passed to truncateText
|
||||
expect(truncateText).not.toHaveBeenCalledWith(
|
||||
"very-long-model-name-that-should-not-be-truncated",
|
||||
"very-long-model-name-that-should-not-be-truncated"
|
||||
);
|
||||
|
||||
// Full model name should be displayed
|
||||
expect(
|
||||
screen.getByText("very-long-model-name-that-should-not-be-truncated"),
|
||||
screen.getByText("very-long-model-name-that-should-not-be-truncated")
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
|
|
@ -142,7 +142,7 @@ export function LogsTable({
|
|||
<Table>
|
||||
<TableCaption className="sr-only">{caption}</TableCaption>
|
||||
<TableBody>
|
||||
{data.map((row) => (
|
||||
{data.map(row => (
|
||||
<TableRow
|
||||
key={row.id}
|
||||
onClick={() => router.push(row.detailPath)}
|
||||
|
|
|
@ -22,7 +22,7 @@ export function GroupedItemsDisplay({
|
|||
|
||||
return (
|
||||
<>
|
||||
{groupedItems.map((groupedItem) => {
|
||||
{groupedItems.map(groupedItem => {
|
||||
// If this is a function call with an output, render the grouped component
|
||||
if (
|
||||
groupedItem.outputItem &&
|
||||
|
|
|
@ -18,7 +18,7 @@ export interface GroupedItem {
|
|||
* @returns Array of grouped items with their outputs
|
||||
*/
|
||||
export function useFunctionCallGrouping(
|
||||
items: AnyResponseItem[],
|
||||
items: AnyResponseItem[]
|
||||
): GroupedItem[] {
|
||||
return useMemo(() => {
|
||||
const groupedItems: GroupedItem[] = [];
|
||||
|
|
|
@ -52,7 +52,7 @@ export function ItemRenderer({
|
|||
// Fallback to generic item for unknown types
|
||||
return (
|
||||
<GenericItemComponent
|
||||
item={item as any}
|
||||
item={item as Record<string, unknown>}
|
||||
index={index}
|
||||
keyPrefix={keyPrefix}
|
||||
/>
|
||||
|
|
|
@ -20,7 +20,7 @@ export function MessageItemComponent({
|
|||
content = item.content;
|
||||
} else if (Array.isArray(item.content)) {
|
||||
content = item.content
|
||||
.map((c) => {
|
||||
.map(c => {
|
||||
return c.type === "input_text" || c.type === "output_text"
|
||||
? c.text
|
||||
: JSON.stringify(c);
|
||||
|
|
|
@ -18,7 +18,7 @@ describe("ResponseDetailView", () => {
|
|||
describe("Loading State", () => {
|
||||
test("renders loading skeleton when isLoading is true", () => {
|
||||
const { container } = render(
|
||||
<ResponseDetailView {...defaultProps} isLoading={true} />,
|
||||
<ResponseDetailView {...defaultProps} isLoading={true} />
|
||||
);
|
||||
|
||||
// Check for skeleton elements
|
||||
|
@ -36,13 +36,13 @@ describe("ResponseDetailView", () => {
|
|||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: errorMessage }}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
expect(screen.getByText("Responses Details")).toBeInTheDocument();
|
||||
// The error message is split across elements, so we check for parts
|
||||
expect(
|
||||
screen.getByText(/Error loading details for ID/),
|
||||
screen.getByText(/Error loading details for ID/)
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(/test_id/)).toBeInTheDocument();
|
||||
expect(screen.getByText(/Network Error/)).toBeInTheDocument();
|
||||
|
@ -53,11 +53,11 @@ describe("ResponseDetailView", () => {
|
|||
<ResponseDetailView
|
||||
{...defaultProps}
|
||||
error={{ name: "Error", message: "" }}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
expect(
|
||||
screen.getByText(/Error loading details for ID/),
|
||||
screen.getByText(/Error loading details for ID/)
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(/test_id/)).toBeInTheDocument();
|
||||
});
|
||||
|
@ -124,14 +124,14 @@ describe("ResponseDetailView", () => {
|
|||
// Check properties - use regex to handle text split across elements
|
||||
expect(screen.getByText(/Created/)).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString()),
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString())
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Check for the specific ID label (not Previous Response ID)
|
||||
expect(
|
||||
screen.getByText((content, element) => {
|
||||
return element?.tagName === "STRONG" && content === "ID:";
|
||||
}),
|
||||
})
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("resp_123")).toBeInTheDocument();
|
||||
|
||||
|
@ -166,7 +166,7 @@ describe("ResponseDetailView", () => {
|
|||
};
|
||||
|
||||
render(
|
||||
<ResponseDetailView {...defaultProps} response={minimalResponse} />,
|
||||
<ResponseDetailView {...defaultProps} response={minimalResponse} />
|
||||
);
|
||||
|
||||
// Should show required properties
|
||||
|
@ -179,7 +179,7 @@ describe("ResponseDetailView", () => {
|
|||
expect(screen.queryByText("Top P")).not.toBeInTheDocument();
|
||||
expect(screen.queryByText("Parallel Tool Calls")).not.toBeInTheDocument();
|
||||
expect(
|
||||
screen.queryByText("Previous Response ID"),
|
||||
screen.queryByText("Previous Response ID")
|
||||
).not.toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -196,7 +196,7 @@ describe("ResponseDetailView", () => {
|
|||
|
||||
// The error is shown in the properties sidebar, not as a separate "Error" label
|
||||
expect(
|
||||
screen.getByText("invalid_request: The request was invalid"),
|
||||
screen.getByText("invalid_request: The request was invalid")
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
@ -218,7 +218,7 @@ describe("ResponseDetailView", () => {
|
|||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
isLoadingInputItems={true}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
// Check for skeleton loading in input items section
|
||||
|
@ -227,7 +227,7 @@ describe("ResponseDetailView", () => {
|
|||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
isLoadingInputItems={true}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
const skeletons = container.querySelectorAll('[data-slot="skeleton"]');
|
||||
|
@ -243,16 +243,16 @@ describe("ResponseDetailView", () => {
|
|||
name: "Error",
|
||||
message: "Failed to load input items",
|
||||
}}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
expect(
|
||||
screen.getByText(
|
||||
"Error loading input items: Failed to load input items",
|
||||
),
|
||||
"Error loading input items: Failed to load input items"
|
||||
)
|
||||
).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText("Falling back to response input data."),
|
||||
screen.getByText("Falling back to response input data.")
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Should still show fallback input data
|
||||
|
@ -276,7 +276,7 @@ describe("ResponseDetailView", () => {
|
|||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
inputItems={mockInputItems}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
// Should show input items data, not response.input
|
||||
|
@ -295,7 +295,7 @@ describe("ResponseDetailView", () => {
|
|||
{...defaultProps}
|
||||
response={mockResponse}
|
||||
inputItems={emptyInputItems}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
// Should show fallback input data
|
||||
|
@ -313,7 +313,7 @@ describe("ResponseDetailView", () => {
|
|||
{...defaultProps}
|
||||
response={responseWithoutInput}
|
||||
inputItems={null}
|
||||
/>,
|
||||
/>
|
||||
);
|
||||
|
||||
expect(screen.getByText("No input data available.")).toBeInTheDocument();
|
||||
|
@ -443,7 +443,7 @@ describe("ResponseDetailView", () => {
|
|||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText('input_function({"param": "value"})'),
|
||||
screen.getByText('input_function({"param": "value"})')
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
});
|
||||
|
@ -468,7 +468,7 @@ describe("ResponseDetailView", () => {
|
|||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText("web_search_call(status: completed)"),
|
||||
screen.getByText("web_search_call(status: completed)")
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
expect(screen.getByText("(Web Search)")).toBeInTheDocument();
|
||||
|
@ -522,7 +522,7 @@ describe("ResponseDetailView", () => {
|
|||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText("First output Second output"),
|
||||
screen.getByText("First output Second output")
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Assistant")).toBeInTheDocument();
|
||||
});
|
||||
|
@ -549,7 +549,7 @@ describe("ResponseDetailView", () => {
|
|||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText('search_function({"query": "test"})'),
|
||||
screen.getByText('search_function({"query": "test"})')
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
});
|
||||
|
@ -598,7 +598,7 @@ describe("ResponseDetailView", () => {
|
|||
render(<ResponseDetailView {...defaultProps} response={mockResponse} />);
|
||||
|
||||
expect(
|
||||
screen.getByText("web_search_call(status: completed)"),
|
||||
screen.getByText("web_search_call(status: completed)")
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(/Function Call/)).toBeInTheDocument();
|
||||
expect(screen.getByText("(Web Search)")).toBeInTheDocument();
|
||||
|
@ -616,7 +616,7 @@ describe("ResponseDetailView", () => {
|
|||
type: "unknown_type",
|
||||
custom_field: "custom_value",
|
||||
data: { nested: "object" },
|
||||
} as any,
|
||||
} as unknown,
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
@ -625,7 +625,7 @@ describe("ResponseDetailView", () => {
|
|||
|
||||
// Should show JSON stringified content
|
||||
expect(
|
||||
screen.getByText(/custom_field.*custom_value/),
|
||||
screen.getByText(/custom_field.*custom_value/)
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("(unknown_type)")).toBeInTheDocument();
|
||||
});
|
||||
|
@ -666,7 +666,7 @@ describe("ResponseDetailView", () => {
|
|||
role: "assistant",
|
||||
call_id: "call_123",
|
||||
content: "sunny and warm",
|
||||
} as any, // Using any to bypass the type restriction for this test
|
||||
} as unknown, // Using any to bypass the type restriction for this test
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
@ -676,7 +676,7 @@ describe("ResponseDetailView", () => {
|
|||
// Should show the function call and message as separate items (not grouped)
|
||||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText('get_weather({"city": "Tokyo"})'),
|
||||
screen.getByText('get_weather({"city": "Tokyo"})')
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText("Assistant")).toBeInTheDocument();
|
||||
expect(screen.getByText("sunny and warm")).toBeInTheDocument();
|
||||
|
@ -706,7 +706,7 @@ describe("ResponseDetailView", () => {
|
|||
status: "completed",
|
||||
call_id: "call_123",
|
||||
output: "sunny and warm",
|
||||
} as any, // Using any to bypass the type restriction for this test
|
||||
} as unknown,
|
||||
],
|
||||
input: [],
|
||||
};
|
||||
|
@ -717,7 +717,7 @@ describe("ResponseDetailView", () => {
|
|||
expect(screen.getByText("Function Call")).toBeInTheDocument();
|
||||
expect(screen.getByText("Arguments")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText('get_weather({"city": "Tokyo"})'),
|
||||
screen.getByText('get_weather({"city": "Tokyo"})')
|
||||
).toBeInTheDocument();
|
||||
// Use getAllByText since there are multiple "Output" elements (card title and output label)
|
||||
const outputElements = screen.getAllByText("Output");
|
||||
|
|
|
@ -146,7 +146,7 @@ describe("ResponsesTable", () => {
|
|||
expect(tableCaption).toBeInTheDocument();
|
||||
if (tableCaption) {
|
||||
const captionSkeleton = tableCaption.querySelector(
|
||||
'[data-slot="skeleton"]',
|
||||
'[data-slot="skeleton"]'
|
||||
);
|
||||
expect(captionSkeleton).toBeInTheDocument();
|
||||
}
|
||||
|
@ -156,7 +156,7 @@ describe("ResponsesTable", () => {
|
|||
expect(tableBody).toBeInTheDocument();
|
||||
if (tableBody) {
|
||||
const bodySkeletons = tableBody.querySelectorAll(
|
||||
'[data-slot="skeleton"]',
|
||||
'[data-slot="skeleton"]'
|
||||
);
|
||||
expect(bodySkeletons.length).toBeGreaterThan(0);
|
||||
}
|
||||
|
@ -176,14 +176,14 @@ describe("ResponsesTable", () => {
|
|||
|
||||
render(<ResponsesTable {...defaultProps} />);
|
||||
expect(
|
||||
screen.getByText("Unable to load chat completions"),
|
||||
screen.getByText("Unable to load chat completions")
|
||||
).toBeInTheDocument();
|
||||
expect(screen.getByText(errorMessage)).toBeInTheDocument();
|
||||
});
|
||||
|
||||
test.each([{ name: "Error", message: "" }, {}])(
|
||||
"renders default error message when error has no message",
|
||||
(errorObject) => {
|
||||
errorObject => {
|
||||
mockedUsePagination.mockReturnValue({
|
||||
data: [],
|
||||
status: "error",
|
||||
|
@ -194,14 +194,14 @@ describe("ResponsesTable", () => {
|
|||
|
||||
render(<ResponsesTable {...defaultProps} />);
|
||||
expect(
|
||||
screen.getByText("Unable to load chat completions"),
|
||||
screen.getByText("Unable to load chat completions")
|
||||
).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(
|
||||
"An unexpected error occurred while loading the data.",
|
||||
),
|
||||
"An unexpected error occurred while loading the data."
|
||||
)
|
||||
).toBeInTheDocument();
|
||||
},
|
||||
}
|
||||
);
|
||||
});
|
||||
|
||||
|
@ -275,7 +275,7 @@ describe("ResponsesTable", () => {
|
|||
|
||||
// Table caption
|
||||
expect(
|
||||
screen.getByText("A list of your recent responses."),
|
||||
screen.getByText("A list of your recent responses.")
|
||||
).toBeInTheDocument();
|
||||
|
||||
// Table headers
|
||||
|
@ -289,14 +289,14 @@ describe("ResponsesTable", () => {
|
|||
expect(screen.getByText("Test output")).toBeInTheDocument();
|
||||
expect(screen.getByText("llama-test-model")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString()),
|
||||
screen.getByText(new Date(1710000000 * 1000).toLocaleString())
|
||||
).toBeInTheDocument();
|
||||
|
||||
expect(screen.getByText("Another input")).toBeInTheDocument();
|
||||
expect(screen.getByText("Another output")).toBeInTheDocument();
|
||||
expect(screen.getByText("llama-another-model")).toBeInTheDocument();
|
||||
expect(
|
||||
screen.getByText(new Date(1710001000 * 1000).toLocaleString()),
|
||||
screen.getByText(new Date(1710001000 * 1000).toLocaleString())
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
});
|
||||
|
@ -487,7 +487,7 @@ describe("ResponsesTable", () => {
|
|||
|
||||
render(<ResponsesTable {...defaultProps} />);
|
||||
expect(
|
||||
screen.getByText('search_function({"query": "test"})'),
|
||||
screen.getByText('search_function({"query": "test"})')
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -548,7 +548,7 @@ describe("ResponsesTable", () => {
|
|||
|
||||
render(<ResponsesTable {...defaultProps} />);
|
||||
expect(
|
||||
screen.getByText("web_search_call(status: completed)"),
|
||||
screen.getByText("web_search_call(status: completed)")
|
||||
).toBeInTheDocument();
|
||||
});
|
||||
|
||||
|
@ -565,7 +565,7 @@ describe("ResponsesTable", () => {
|
|||
id: "unknown_123",
|
||||
status: "completed",
|
||||
custom_field: "custom_value",
|
||||
} as any,
|
||||
} as unknown,
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
@ -594,7 +594,7 @@ describe("ResponsesTable", () => {
|
|||
{
|
||||
type: "unknown_type",
|
||||
data: "some data",
|
||||
} as any,
|
||||
} as unknown,
|
||||
],
|
||||
input: [{ type: "message", content: "input" }],
|
||||
};
|
||||
|
@ -623,7 +623,7 @@ describe("ResponsesTable", () => {
|
|||
return typeof text === "string" && text.length > effectiveMaxLength
|
||||
? text.slice(0, effectiveMaxLength) + "..."
|
||||
: text;
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
const longInput =
|
||||
|
@ -665,7 +665,7 @@ describe("ResponsesTable", () => {
|
|||
|
||||
// The truncated text should be present for both input and output
|
||||
const truncatedTexts = screen.getAllByText(
|
||||
longInput.slice(0, 10) + "...",
|
||||
longInput.slice(0, 10) + "..."
|
||||
);
|
||||
expect(truncatedTexts.length).toBe(2); // one for input, one for output
|
||||
});
|
||||
|
|
|
@ -27,7 +27,7 @@ interface ResponsesTableProps {
|
|||
* Helper function to convert ResponseListResponse.Data to OpenAIResponse
|
||||
*/
|
||||
const convertResponseListData = (
|
||||
responseData: ResponseListResponse.Data,
|
||||
responseData: ResponseListResponse.Data
|
||||
): OpenAIResponse => {
|
||||
return {
|
||||
id: responseData.id,
|
||||
|
@ -56,8 +56,8 @@ function getInputText(response: OpenAIResponse): string {
|
|||
}
|
||||
|
||||
function getOutputText(response: OpenAIResponse): string {
|
||||
const firstMessage = response.output.find((item) =>
|
||||
isMessageItem(item as any),
|
||||
const firstMessage = response.output.find(item =>
|
||||
isMessageItem(item as Record<string, unknown>)
|
||||
);
|
||||
if (firstMessage) {
|
||||
const content = extractContentFromItem(firstMessage as MessageItem);
|
||||
|
@ -66,15 +66,15 @@ function getOutputText(response: OpenAIResponse): string {
|
|||
}
|
||||
}
|
||||
|
||||
const functionCall = response.output.find((item) =>
|
||||
isFunctionCallItem(item as any),
|
||||
const functionCall = response.output.find(item =>
|
||||
isFunctionCallItem(item as Record<string, unknown>)
|
||||
);
|
||||
if (functionCall) {
|
||||
return formatFunctionCall(functionCall as FunctionCallItem);
|
||||
}
|
||||
|
||||
const webSearchCall = response.output.find((item) =>
|
||||
isWebSearchCallItem(item as any),
|
||||
const webSearchCall = response.output.find(item =>
|
||||
isWebSearchCallItem(item as Record<string, unknown>)
|
||||
);
|
||||
if (webSearchCall) {
|
||||
return formatWebSearchCall(webSearchCall as WebSearchCallItem);
|
||||
|
@ -95,7 +95,7 @@ function extractContentFromItem(item: {
|
|||
} else if (Array.isArray(item.content)) {
|
||||
const textContent = item.content.find(
|
||||
(c: ResponseInputMessageContent) =>
|
||||
c.type === "input_text" || c.type === "output_text",
|
||||
c.type === "input_text" || c.type === "output_text"
|
||||
);
|
||||
return textContent?.text || "";
|
||||
}
|
||||
|
@ -131,14 +131,14 @@ export function ResponsesTable({ paginationOptions }: ResponsesTableProps) {
|
|||
limit: number;
|
||||
model?: string;
|
||||
order?: string;
|
||||
},
|
||||
}
|
||||
) => {
|
||||
const response = await client.responses.list({
|
||||
after: params.after,
|
||||
limit: params.limit,
|
||||
...(params.model && { model: params.model }),
|
||||
...(params.order && { order: params.order }),
|
||||
} as any);
|
||||
} as Parameters<typeof client.responses.list>[0]);
|
||||
|
||||
const listResponse = response as ResponseListResponse;
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ export type AnyResponseItem =
|
|||
| FunctionCallOutputItem;
|
||||
|
||||
export function isMessageInput(
|
||||
item: ResponseInput,
|
||||
item: ResponseInput
|
||||
): item is ResponseInput & { type: "message" } {
|
||||
return item.type === "message";
|
||||
}
|
||||
|
@ -39,23 +39,23 @@ export function isMessageItem(item: AnyResponseItem): item is MessageItem {
|
|||
}
|
||||
|
||||
export function isFunctionCallItem(
|
||||
item: AnyResponseItem,
|
||||
item: AnyResponseItem
|
||||
): item is FunctionCallItem {
|
||||
return item.type === "function_call" && "name" in item;
|
||||
}
|
||||
|
||||
export function isWebSearchCallItem(
|
||||
item: AnyResponseItem,
|
||||
item: AnyResponseItem
|
||||
): item is WebSearchCallItem {
|
||||
return item.type === "web_search_call";
|
||||
}
|
||||
|
||||
export function isFunctionCallOutputItem(
|
||||
item: AnyResponseItem,
|
||||
item: AnyResponseItem
|
||||
): item is FunctionCallOutputItem {
|
||||
return (
|
||||
item.type === "function_call_output" &&
|
||||
"call_id" in item &&
|
||||
typeof (item as any).call_id === "string"
|
||||
typeof (item as Record<string, unknown>).call_id === "string"
|
||||
);
|
||||
}
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"use client"
|
||||
"use client";
|
||||
|
||||
import { useEffect, useRef } from "react"
|
||||
import { useEffect, useRef } from "react";
|
||||
|
||||
// Configuration constants for the audio analyzer
|
||||
const AUDIO_CONFIG = {
|
||||
|
@ -14,12 +14,12 @@ const AUDIO_CONFIG = {
|
|||
MAX_INTENSITY: 255, // Maximum gray value (brighter)
|
||||
INTENSITY_RANGE: 155, // MAX_INTENSITY - MIN_INTENSITY
|
||||
},
|
||||
} as const
|
||||
} as const;
|
||||
|
||||
interface AudioVisualizerProps {
|
||||
stream: MediaStream | null
|
||||
isRecording: boolean
|
||||
onClick: () => void
|
||||
stream: MediaStream | null;
|
||||
isRecording: boolean;
|
||||
onClick: () => void;
|
||||
}
|
||||
|
||||
export function AudioVisualizer({
|
||||
|
@ -28,91 +28,91 @@ export function AudioVisualizer({
|
|||
onClick,
|
||||
}: AudioVisualizerProps) {
|
||||
// Refs for managing audio context and animation
|
||||
const canvasRef = useRef<HTMLCanvasElement>(null)
|
||||
const audioContextRef = useRef<AudioContext | null>(null)
|
||||
const analyserRef = useRef<AnalyserNode | null>(null)
|
||||
const animationFrameRef = useRef<number>()
|
||||
const containerRef = useRef<HTMLDivElement>(null)
|
||||
const canvasRef = useRef<HTMLCanvasElement>(null);
|
||||
const audioContextRef = useRef<AudioContext | null>(null);
|
||||
const analyserRef = useRef<AnalyserNode | null>(null);
|
||||
const animationFrameRef = useRef<number>();
|
||||
const containerRef = useRef<HTMLDivElement>(null);
|
||||
|
||||
// Cleanup function to stop visualization and close audio context
|
||||
const cleanup = () => {
|
||||
if (animationFrameRef.current) {
|
||||
cancelAnimationFrame(animationFrameRef.current)
|
||||
cancelAnimationFrame(animationFrameRef.current);
|
||||
}
|
||||
if (audioContextRef.current) {
|
||||
audioContextRef.current.close()
|
||||
audioContextRef.current.close();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Cleanup on unmount
|
||||
useEffect(() => {
|
||||
return cleanup
|
||||
}, [])
|
||||
return cleanup;
|
||||
}, []);
|
||||
|
||||
// Start or stop visualization based on recording state
|
||||
useEffect(() => {
|
||||
if (stream && isRecording) {
|
||||
startVisualization()
|
||||
startVisualization();
|
||||
} else {
|
||||
cleanup()
|
||||
cleanup();
|
||||
}
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, [stream, isRecording])
|
||||
}, [stream, isRecording]);
|
||||
|
||||
// Handle window resize
|
||||
useEffect(() => {
|
||||
const handleResize = () => {
|
||||
if (canvasRef.current && containerRef.current) {
|
||||
const container = containerRef.current
|
||||
const canvas = canvasRef.current
|
||||
const dpr = window.devicePixelRatio || 1
|
||||
const container = containerRef.current;
|
||||
const canvas = canvasRef.current;
|
||||
const dpr = window.devicePixelRatio || 1;
|
||||
|
||||
// Set canvas size based on container and device pixel ratio
|
||||
const rect = container.getBoundingClientRect()
|
||||
const rect = container.getBoundingClientRect();
|
||||
// Account for the 2px total margin (1px on each side)
|
||||
canvas.width = (rect.width - 2) * dpr
|
||||
canvas.height = (rect.height - 2) * dpr
|
||||
canvas.width = (rect.width - 2) * dpr;
|
||||
canvas.height = (rect.height - 2) * dpr;
|
||||
|
||||
// Scale canvas CSS size to match container minus margins
|
||||
canvas.style.width = `${rect.width - 2}px`
|
||||
canvas.style.height = `${rect.height - 2}px`
|
||||
canvas.style.width = `${rect.width - 2}px`;
|
||||
canvas.style.height = `${rect.height - 2}px`;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
window.addEventListener("resize", handleResize)
|
||||
window.addEventListener("resize", handleResize);
|
||||
// Initial setup
|
||||
handleResize()
|
||||
handleResize();
|
||||
|
||||
return () => window.removeEventListener("resize", handleResize)
|
||||
}, [])
|
||||
return () => window.removeEventListener("resize", handleResize);
|
||||
}, []);
|
||||
|
||||
// Initialize audio context and start visualization
|
||||
const startVisualization = async () => {
|
||||
try {
|
||||
const audioContext = new AudioContext()
|
||||
audioContextRef.current = audioContext
|
||||
const audioContext = new AudioContext();
|
||||
audioContextRef.current = audioContext;
|
||||
|
||||
const analyser = audioContext.createAnalyser()
|
||||
analyser.fftSize = AUDIO_CONFIG.FFT_SIZE
|
||||
analyser.smoothingTimeConstant = AUDIO_CONFIG.SMOOTHING
|
||||
analyserRef.current = analyser
|
||||
const analyser = audioContext.createAnalyser();
|
||||
analyser.fftSize = AUDIO_CONFIG.FFT_SIZE;
|
||||
analyser.smoothingTimeConstant = AUDIO_CONFIG.SMOOTHING;
|
||||
analyserRef.current = analyser;
|
||||
|
||||
const source = audioContext.createMediaStreamSource(stream!)
|
||||
source.connect(analyser)
|
||||
const source = audioContext.createMediaStreamSource(stream!);
|
||||
source.connect(analyser);
|
||||
|
||||
draw()
|
||||
draw();
|
||||
} catch (error) {
|
||||
console.error("Error starting visualization:", error)
|
||||
console.error("Error starting visualization:", error);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Calculate the color intensity based on bar height
|
||||
const getBarColor = (normalizedHeight: number) => {
|
||||
const intensity =
|
||||
Math.floor(normalizedHeight * AUDIO_CONFIG.COLOR.INTENSITY_RANGE) +
|
||||
AUDIO_CONFIG.COLOR.MIN_INTENSITY
|
||||
return `rgb(${intensity}, ${intensity}, ${intensity})`
|
||||
}
|
||||
AUDIO_CONFIG.COLOR.MIN_INTENSITY;
|
||||
return `rgb(${intensity}, ${intensity}, ${intensity})`;
|
||||
};
|
||||
|
||||
// Draw a single bar of the visualizer
|
||||
const drawBar = (
|
||||
|
@ -123,52 +123,52 @@ export function AudioVisualizer({
|
|||
height: number,
|
||||
color: string
|
||||
) => {
|
||||
ctx.fillStyle = color
|
||||
ctx.fillStyle = color;
|
||||
// Draw upper bar (above center)
|
||||
ctx.fillRect(x, centerY - height, width, height)
|
||||
ctx.fillRect(x, centerY - height, width, height);
|
||||
// Draw lower bar (below center)
|
||||
ctx.fillRect(x, centerY, width, height)
|
||||
}
|
||||
ctx.fillRect(x, centerY, width, height);
|
||||
};
|
||||
|
||||
// Main drawing function
|
||||
const draw = () => {
|
||||
if (!isRecording) return
|
||||
if (!isRecording) return;
|
||||
|
||||
const canvas = canvasRef.current
|
||||
const ctx = canvas?.getContext("2d")
|
||||
if (!canvas || !ctx || !analyserRef.current) return
|
||||
const canvas = canvasRef.current;
|
||||
const ctx = canvas?.getContext("2d");
|
||||
if (!canvas || !ctx || !analyserRef.current) return;
|
||||
|
||||
const dpr = window.devicePixelRatio || 1
|
||||
ctx.scale(dpr, dpr)
|
||||
const dpr = window.devicePixelRatio || 1;
|
||||
ctx.scale(dpr, dpr);
|
||||
|
||||
const analyser = analyserRef.current
|
||||
const bufferLength = analyser.frequencyBinCount
|
||||
const frequencyData = new Uint8Array(bufferLength)
|
||||
const analyser = analyserRef.current;
|
||||
const bufferLength = analyser.frequencyBinCount;
|
||||
const frequencyData = new Uint8Array(bufferLength);
|
||||
|
||||
const drawFrame = () => {
|
||||
animationFrameRef.current = requestAnimationFrame(drawFrame)
|
||||
animationFrameRef.current = requestAnimationFrame(drawFrame);
|
||||
|
||||
// Get current frequency data
|
||||
analyser.getByteFrequencyData(frequencyData)
|
||||
analyser.getByteFrequencyData(frequencyData);
|
||||
|
||||
// Clear canvas - use CSS pixels for clearing
|
||||
ctx.clearRect(0, 0, canvas.width / dpr, canvas.height / dpr)
|
||||
ctx.clearRect(0, 0, canvas.width / dpr, canvas.height / dpr);
|
||||
|
||||
// Calculate dimensions in CSS pixels
|
||||
const barWidth = Math.max(
|
||||
AUDIO_CONFIG.MIN_BAR_WIDTH,
|
||||
canvas.width / dpr / bufferLength - AUDIO_CONFIG.BAR_SPACING
|
||||
)
|
||||
const centerY = canvas.height / dpr / 2
|
||||
let x = 0
|
||||
);
|
||||
const centerY = canvas.height / dpr / 2;
|
||||
let x = 0;
|
||||
|
||||
// Draw each frequency bar
|
||||
for (let i = 0; i < bufferLength; i++) {
|
||||
const normalizedHeight = frequencyData[i] / 255 // Convert to 0-1 range
|
||||
const normalizedHeight = frequencyData[i] / 255; // Convert to 0-1 range
|
||||
const barHeight = Math.max(
|
||||
AUDIO_CONFIG.MIN_BAR_HEIGHT,
|
||||
normalizedHeight * centerY
|
||||
)
|
||||
);
|
||||
|
||||
drawBar(
|
||||
ctx,
|
||||
|
@ -177,14 +177,14 @@ export function AudioVisualizer({
|
|||
barWidth,
|
||||
barHeight,
|
||||
getBarColor(normalizedHeight)
|
||||
)
|
||||
);
|
||||
|
||||
x += barWidth + AUDIO_CONFIG.BAR_SPACING
|
||||
x += barWidth + AUDIO_CONFIG.BAR_SPACING;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
drawFrame()
|
||||
}
|
||||
drawFrame();
|
||||
};
|
||||
|
||||
return (
|
||||
<div
|
||||
|
@ -194,5 +194,5 @@ export function AudioVisualizer({
|
|||
>
|
||||
<canvas ref={canvasRef} className="h-full w-full" />
|
||||
</div>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
|
|
@ -14,7 +14,7 @@ function BreadcrumbList({ className, ...props }: React.ComponentProps<"ol">) {
|
|||
data-slot="breadcrumb-list"
|
||||
className={cn(
|
||||
"text-muted-foreground flex flex-wrap items-center gap-1.5 text-sm break-words sm:gap-2.5",
|
||||
className,
|
||||
className
|
||||
)}
|
||||
{...props}
|
||||
/>
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import * as React from "react"
|
||||
import { Slot } from "@radix-ui/react-slot"
|
||||
import { cva, type VariantProps } from "class-variance-authority"
|
||||
import * as React from "react";
|
||||
import { Slot } from "@radix-ui/react-slot";
|
||||
import { cva, type VariantProps } from "class-variance-authority";
|
||||
|
||||
import { cn } from "@/lib/utils"
|
||||
import { cn } from "@/lib/utils";
|
||||
|
||||
const buttonVariants = cva(
|
||||
"inline-flex items-center justify-center gap-2 whitespace-nowrap rounded-md text-sm font-medium transition-all disabled:pointer-events-none disabled:opacity-50 [&_svg]:pointer-events-none [&_svg:not([class*='size-'])]:size-4 shrink-0 [&_svg]:shrink-0 outline-none focus-visible:border-ring focus-visible:ring-ring/50 focus-visible:ring-[3px] aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40 aria-invalid:border-destructive",
|
||||
|
@ -33,7 +33,7 @@ const buttonVariants = cva(
|
|||
size: "default",
|
||||
},
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
function Button({
|
||||
className,
|
||||
|
@ -43,9 +43,9 @@ function Button({
|
|||
...props
|
||||
}: React.ComponentProps<"button"> &
|
||||
VariantProps<typeof buttonVariants> & {
|
||||
asChild?: boolean
|
||||
asChild?: boolean;
|
||||
}) {
|
||||
const Comp = asChild ? Slot : "button"
|
||||
const Comp = asChild ? Slot : "button";
|
||||
|
||||
return (
|
||||
<Comp
|
||||
|
@ -53,7 +53,7 @@ function Button({
|
|||
className={cn(buttonVariants({ variant, size, className }))}
|
||||
{...props}
|
||||
/>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
export { Button, buttonVariants }
|
||||
export { Button, buttonVariants };
|
||||
|
|
|
@ -8,7 +8,7 @@ function Card({ className, ...props }: React.ComponentProps<"div">) {
|
|||
data-slot="card"
|
||||
className={cn(
|
||||
"bg-card text-card-foreground flex flex-col gap-6 rounded-xl border py-6 shadow-sm",
|
||||
className,
|
||||
className
|
||||
)}
|
||||
{...props}
|
||||
/>
|
||||
|
@ -21,7 +21,7 @@ function CardHeader({ className, ...props }: React.ComponentProps<"div">) {
|
|||
data-slot="card-header"
|
||||
className={cn(
|
||||
"@container/card-header grid auto-rows-min grid-rows-[auto_auto] items-start gap-1.5 px-6 has-data-[slot=card-action]:grid-cols-[1fr_auto] [.border-b]:pb-6",
|
||||
className,
|
||||
className
|
||||
)}
|
||||
{...props}
|
||||
/>
|
||||
|
@ -54,7 +54,7 @@ function CardAction({ className, ...props }: React.ComponentProps<"div">) {
|
|||
data-slot="card-action"
|
||||
className={cn(
|
||||
"col-start-2 row-span-2 row-start-1 self-start justify-self-end",
|
||||
className,
|
||||
className
|
||||
)}
|
||||
{...props}
|
||||
/>
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
"use client"
|
||||
"use client";
|
||||
|
||||
import * as CollapsiblePrimitive from "@radix-ui/react-collapsible"
|
||||
import * as CollapsiblePrimitive from "@radix-ui/react-collapsible";
|
||||
|
||||
function Collapsible({
|
||||
...props
|
||||
}: React.ComponentProps<typeof CollapsiblePrimitive.Root>) {
|
||||
return <CollapsiblePrimitive.Root data-slot="collapsible" {...props} />
|
||||
return <CollapsiblePrimitive.Root data-slot="collapsible" {...props} />;
|
||||
}
|
||||
|
||||
function CollapsibleTrigger({
|
||||
|
@ -16,7 +16,7 @@ function CollapsibleTrigger({
|
|||
data-slot="collapsible-trigger"
|
||||
{...props}
|
||||
/>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
function CollapsibleContent({
|
||||
|
@ -27,7 +27,7 @@ function CollapsibleContent({
|
|||
data-slot="collapsible-content"
|
||||
{...props}
|
||||
/>
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
export { Collapsible, CollapsibleTrigger, CollapsibleContent }
|
||||
export { Collapsible, CollapsibleTrigger, CollapsibleContent };
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue