feat: ability to use postgres as store for starter distro (#4076)

## What does this PR do?

The starter distribution now comes with all the required packages to
support persistent stores—like the agent store, metadata, and
inference—using PostgreSQL. Users can enable PostgreSQL support by
setting the `ENABLE_POSTGRES_STORE=1` environment variable.

This PR consolidates the functionality from the removed `postgres-demo`
distribution into the starter distribution, reducing maintenance
overhead.

**Closes: #2619**  
**Supersedes: #2851** (rebased and updated)

## Changes Made

1. **Added PostgreSQL support to starter distribution**
   - New `run-with-postgres-store.yaml` configuration
- Automatic config switching via `ENABLE_POSTGRES_STORE` environment
variable
   - Removed separate `postgres-demo` distribution

2. **Updated to new build system**
   - Integrated postgres switching logic into Containerfile entrypoint
   - Uses new `storage_backends` and `storage_stores` API
   - Properly configured both PostgreSQL KV store and SQL store

3. **Updated dependencies**
   - Added `psycopg2-binary` and `asyncpg` to starter distribution
   - All postgres-related dependencies automatically included

## How to Use

### With Docker (PostgreSQL):
```bash
docker run \
  -e ENABLE_POSTGRES_STORE=1 \
  -e POSTGRES_HOST=your_postgres_host \
  -e POSTGRES_PORT=5432 \
  -e POSTGRES_DB=llamastack \
  -e POSTGRES_USER=llamastack \
  -e POSTGRES_PASSWORD=llamastack \
  -e OPENAI_API_KEY=your_key \
  llamastack/distribution-starter
```

### PostgreSQL environment variables:
- `POSTGRES_HOST`: Postgres host (default: `localhost`)
- `POSTGRES_PORT`: Postgres port (default: `5432`)
- `POSTGRES_DB`: Postgres database name (default: `llamastack`)
- `POSTGRES_USER`: Postgres username (default: `llamastack`)
- `POSTGRES_PASSWORD`: Postgres password (default: `llamastack`)

## Test Plan

All pre-commit hooks pass (mypy, ruff, distro-codegen)  
`llama stack list-deps starter` confirms psycopg2-binary is included  
Storage configuration correctly uses PostgreSQL backends  
Container builds successfully with postgres support  

## Credits

Original work by @leseb in #2851. Rebased and updated by @r-bit-rry to
work with latest main.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Sébastien Han @leseb

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
Roy Belio 2025-11-06 01:37:06 +02:00 committed by GitHub
parent 9d5c34af27
commit c672a5d792
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 740 additions and 217 deletions

View file

@ -52,7 +52,17 @@ def resolve_config_or_distro(
logger.debug(f"Using distribution: {distro_config}")
return distro_config
# Strategy 3: Try as built distribution name
# Strategy 3: Try as distro config path (if no .yaml extension and contains a slash)
# eg: starter::run-with-postgres-store.yaml
# Use :: to avoid slash and confusion with a filesystem path
if "::" in config_or_distro:
distro_name, config_name = config_or_distro.split("::")
distro_config = _get_distro_config_path(distro_name, config_name)
if distro_config.exists():
logger.info(f"Using distribution: {distro_config}")
return distro_config
# Strategy 4: Try as built distribution name
distrib_config = DISTRIBS_BASE_DIR / f"llamastack-{config_or_distro}" / f"{config_or_distro}-{mode}.yaml"
if distrib_config.exists():
logger.debug(f"Using built distribution: {distrib_config}")
@ -63,13 +73,15 @@ def resolve_config_or_distro(
logger.debug(f"Using built distribution: {distrib_config}")
return distrib_config
# Strategy 4: Failed - provide helpful error
# Strategy 5: Failed - provide helpful error
raise ValueError(_format_resolution_error(config_or_distro, mode))
def _get_distro_config_path(distro_name: str, mode: Mode) -> Path:
def _get_distro_config_path(distro_name: str, mode: str) -> Path:
"""Get the config file path for a distro."""
return DISTRO_DIR / distro_name / f"{mode}.yaml"
if not mode.endswith(".yaml"):
mode = f"{mode}.yaml"
return DISTRO_DIR / distro_name / mode
def _format_resolution_error(config_or_distro: str, mode: Mode) -> str:

View file

@ -84,6 +84,15 @@ def run_command(command: list[str]) -> int:
text=True,
check=False,
)
# Print stdout and stderr if command failed
if result.returncode != 0:
log.error(f"Command {' '.join(command)} failed with returncode {result.returncode}")
if result.stdout:
log.error(f"STDOUT: {result.stdout}")
if result.stderr:
log.error(f"STDERR: {result.stderr}")
return result.returncode
except subprocess.SubprocessError as e:
log.error(f"Subprocess error: {e}")

View file

@ -56,4 +56,5 @@ image_type: venv
additional_pip_packages:
- aiosqlite
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -13,5 +13,6 @@ from ..starter.starter import get_distribution_template as get_starter_distribut
def get_distribution_template() -> DistributionTemplate:
template = get_starter_distribution_template(name="ci-tests")
template.description = "CI tests for Llama Stack"
template.run_configs.pop("run-with-postgres-store.yaml", None)
return template

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .postgres_demo import get_distribution_template # noqa: F401

View file

@ -1,23 +0,0 @@
version: 2
distribution_spec:
description: Quick start template for running Llama Stack with several popular providers
providers:
inference:
- provider_type: remote::vllm
- provider_type: inline::sentence-transformers
vector_io:
- provider_type: remote::chromadb
safety:
- provider_type: inline::llama-guard
agents:
- provider_type: inline::meta-reference
tool_runtime:
- provider_type: remote::brave-search
- provider_type: remote::tavily-search
- provider_type: inline::rag-runtime
- provider_type: remote::model-context-protocol
image_type: venv
additional_pip_packages:
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -1,125 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.models import ModelType
from llama_stack.core.datatypes import (
BuildProvider,
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.distributions.template import (
DistributionTemplate,
RunConfigSettings,
)
from llama_stack.providers.inline.inference.sentence_transformers import SentenceTransformersInferenceConfig
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
from llama_stack.providers.utils.kvstore.config import PostgresKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
def get_distribution_template() -> DistributionTemplate:
inference_providers = [
Provider(
provider_id="vllm-inference",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.VLLM_URL:=http://localhost:8000/v1}",
),
),
]
providers = {
"inference": [
BuildProvider(provider_type="remote::vllm"),
BuildProvider(provider_type="inline::sentence-transformers"),
],
"vector_io": [BuildProvider(provider_type="remote::chromadb")],
"safety": [BuildProvider(provider_type="inline::llama-guard")],
"agents": [BuildProvider(provider_type="inline::meta-reference")],
"tool_runtime": [
BuildProvider(provider_type="remote::brave-search"),
BuildProvider(provider_type="remote::tavily-search"),
BuildProvider(provider_type="inline::rag-runtime"),
BuildProvider(provider_type="remote::model-context-protocol"),
],
}
name = "postgres-demo"
vector_io_providers = [
Provider(
provider_id="${env.ENABLE_CHROMADB:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
url="${env.CHROMADB_URL:=}",
),
),
]
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
default_models = [
ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm-inference",
)
]
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
embedding_model = ModelInput(
model_id="nomic-embed-text-v1.5",
provider_id=embedding_provider.provider_id,
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 768,
},
)
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Quick start template for running Llama Stack with several popular providers",
container_image=None,
template_path=None,
providers=providers,
available_models_by_provider={},
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": inference_providers + [embedding_provider],
"vector_io": vector_io_providers,
},
default_models=default_models + [embedding_model],
default_tool_groups=default_tool_groups,
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
storage_backends={
"kv_default": PostgresKVStoreConfig.sample_run_config(
table_name="llamastack_kvstore",
),
"sql_default": PostgresSqlStoreConfig.sample_run_config(),
},
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
},
)

View file

@ -57,4 +57,5 @@ image_type: venv
additional_pip_packages:
- aiosqlite
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -0,0 +1,281 @@
version: 2
image_name: starter-gpu
apis:
- agents
- batches
- datasetio
- eval
- files
- inference
- post_training
- safety
- scoring
- tool_runtime
- vector_io
providers:
inference:
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
provider_type: remote::cerebras
config:
base_url: https://api.cerebras.ai
api_key: ${env.CEREBRAS_API_KEY:=}
- provider_id: ${env.OLLAMA_URL:+ollama}
provider_type: remote::ollama
config:
url: ${env.OLLAMA_URL:=http://localhost:11434}
- provider_id: ${env.VLLM_URL:+vllm}
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: ${env.TGI_URL:+tgi}
provider_type: remote::tgi
config:
url: ${env.TGI_URL:=}
- provider_id: fireworks
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inference/v1
api_key: ${env.FIREWORKS_API_KEY:=}
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY:=}
- provider_id: bedrock
provider_type: remote::bedrock
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
provider_type: remote::nvidia
config:
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
api_key: ${env.NVIDIA_API_KEY:=}
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
- provider_id: openai
provider_type: remote::openai
config:
api_key: ${env.OPENAI_API_KEY:=}
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
- provider_id: anthropic
provider_type: remote::anthropic
config:
api_key: ${env.ANTHROPIC_API_KEY:=}
- provider_id: gemini
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
provider_type: remote::vertexai
config:
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
- provider_id: groq
provider_type: remote::groq
config:
url: https://api.groq.com
api_key: ${env.GROQ_API_KEY:=}
- provider_id: sambanova
provider_type: remote::sambanova
config:
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY:=}
- provider_id: ${env.AZURE_API_KEY:+azure}
provider_type: remote::azure
config:
api_key: ${env.AZURE_API_KEY:=}
api_base: ${env.AZURE_API_BASE:=}
api_version: ${env.AZURE_API_VERSION:=}
api_type: ${env.AZURE_API_TYPE:=}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
persistence:
namespace: vector_io::faiss
backend: kv_default
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sqlite_vec.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
- provider_id: ${env.MILVUS_URL:+milvus}
provider_type: inline::milvus
config:
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter-gpu}/milvus.db
persistence:
namespace: vector_io::milvus
backend: kv_default
- provider_id: ${env.CHROMADB_URL:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
- provider_id: ${env.PGVECTOR_DB:+pgvector}
provider_type: remote::pgvector
config:
host: ${env.PGVECTOR_HOST:=localhost}
port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
persistence:
namespace: vector_io::pgvector
backend: kv_default
- provider_id: ${env.QDRANT_URL:+qdrant}
provider_type: remote::qdrant
config:
api_key: ${env.QDRANT_API_KEY:=}
persistence:
namespace: vector_io::qdrant_remote
backend: kv_default
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
provider_type: remote::weaviate
config:
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
persistence:
namespace: vector_io::weaviate
backend: kv_default
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter-gpu/files}
metadata_store:
table_name: files_metadata
backend: sql_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
- provider_id: code-scanner
provider_type: inline::code-scanner
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
post_training:
- provider_id: huggingface-gpu
provider_type: inline::huggingface-gpu
config:
checkpoint_format: huggingface
distributed_backend: null
device: cpu
dpo_output_dir: ~/.llama/distributions/starter-gpu/dpo_output
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
batches:
- provider_id: reference
provider_type: inline::reference
config:
kvstore:
namespace: batches
backend: kv_postgres
storage:
backends:
kv_postgres:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_postgres:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
stores:
metadata:
namespace: registry
backend: kv_postgres
inference:
table_name: inference_store
backend: sql_postgres
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_postgres
prompts:
namespace: prompts
backend: kv_postgres
registered_resources:
models: []
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups: []
server:
port: 8321
telemetry:
enabled: true

View file

@ -57,4 +57,5 @@ image_type: venv
additional_pip_packages:
- aiosqlite
- asyncpg
- psycopg2-binary
- sqlalchemy[asyncio]

View file

@ -0,0 +1,278 @@
version: 2
image_name: starter
apis:
- agents
- batches
- datasetio
- eval
- files
- inference
- post_training
- safety
- scoring
- tool_runtime
- vector_io
providers:
inference:
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
provider_type: remote::cerebras
config:
base_url: https://api.cerebras.ai
api_key: ${env.CEREBRAS_API_KEY:=}
- provider_id: ${env.OLLAMA_URL:+ollama}
provider_type: remote::ollama
config:
url: ${env.OLLAMA_URL:=http://localhost:11434}
- provider_id: ${env.VLLM_URL:+vllm}
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: ${env.TGI_URL:+tgi}
provider_type: remote::tgi
config:
url: ${env.TGI_URL:=}
- provider_id: fireworks
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inference/v1
api_key: ${env.FIREWORKS_API_KEY:=}
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: ${env.TOGETHER_API_KEY:=}
- provider_id: bedrock
provider_type: remote::bedrock
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
provider_type: remote::nvidia
config:
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
api_key: ${env.NVIDIA_API_KEY:=}
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
- provider_id: openai
provider_type: remote::openai
config:
api_key: ${env.OPENAI_API_KEY:=}
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
- provider_id: anthropic
provider_type: remote::anthropic
config:
api_key: ${env.ANTHROPIC_API_KEY:=}
- provider_id: gemini
provider_type: remote::gemini
config:
api_key: ${env.GEMINI_API_KEY:=}
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
provider_type: remote::vertexai
config:
project: ${env.VERTEX_AI_PROJECT:=}
location: ${env.VERTEX_AI_LOCATION:=us-central1}
- provider_id: groq
provider_type: remote::groq
config:
url: https://api.groq.com
api_key: ${env.GROQ_API_KEY:=}
- provider_id: sambanova
provider_type: remote::sambanova
config:
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY:=}
- provider_id: ${env.AZURE_API_KEY:+azure}
provider_type: remote::azure
config:
api_key: ${env.AZURE_API_KEY:=}
api_base: ${env.AZURE_API_BASE:=}
api_version: ${env.AZURE_API_VERSION:=}
api_type: ${env.AZURE_API_TYPE:=}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
vector_io:
- provider_id: faiss
provider_type: inline::faiss
config:
persistence:
namespace: vector_io::faiss
backend: kv_default
- provider_id: sqlite-vec
provider_type: inline::sqlite-vec
config:
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
persistence:
namespace: vector_io::sqlite_vec
backend: kv_default
- provider_id: ${env.MILVUS_URL:+milvus}
provider_type: inline::milvus
config:
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter}/milvus.db
persistence:
namespace: vector_io::milvus
backend: kv_default
- provider_id: ${env.CHROMADB_URL:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
persistence:
namespace: vector_io::chroma_remote
backend: kv_default
- provider_id: ${env.PGVECTOR_DB:+pgvector}
provider_type: remote::pgvector
config:
host: ${env.PGVECTOR_HOST:=localhost}
port: ${env.PGVECTOR_PORT:=5432}
db: ${env.PGVECTOR_DB:=}
user: ${env.PGVECTOR_USER:=}
password: ${env.PGVECTOR_PASSWORD:=}
persistence:
namespace: vector_io::pgvector
backend: kv_default
- provider_id: ${env.QDRANT_URL:+qdrant}
provider_type: remote::qdrant
config:
api_key: ${env.QDRANT_API_KEY:=}
persistence:
namespace: vector_io::qdrant_remote
backend: kv_default
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
provider_type: remote::weaviate
config:
weaviate_api_key: null
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
persistence:
namespace: vector_io::weaviate
backend: kv_default
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
table_name: files_metadata
backend: sql_default
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
- provider_id: code-scanner
provider_type: inline::code-scanner
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
post_training:
- provider_id: torchtune-cpu
provider_type: inline::torchtune-cpu
config:
checkpoint_format: meta
eval:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
kvstore:
namespace: eval
backend: kv_default
datasetio:
- provider_id: huggingface
provider_type: remote::huggingface
config:
kvstore:
namespace: datasetio::huggingface
backend: kv_default
- provider_id: localfs
provider_type: inline::localfs
config:
kvstore:
namespace: datasetio::localfs
backend: kv_default
scoring:
- provider_id: basic
provider_type: inline::basic
- provider_id: llm-as-judge
provider_type: inline::llm-as-judge
- provider_id: braintrust
provider_type: inline::braintrust
config:
openai_api_key: ${env.OPENAI_API_KEY:=}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
batches:
- provider_id: reference
provider_type: inline::reference
config:
kvstore:
namespace: batches
backend: kv_postgres
storage:
backends:
kv_postgres:
type: kv_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore}
sql_postgres:
type: sql_postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
stores:
metadata:
namespace: registry
backend: kv_postgres
inference:
table_name: inference_store
backend: sql_postgres
max_write_queue_size: 10000
num_writers: 4
conversations:
table_name: openai_conversations
backend: sql_postgres
prompts:
namespace: prompts
backend: kv_postgres
registered_resources:
models: []
shields: []
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups: []
server:
port: 8321
telemetry:
enabled: true

View file

@ -17,6 +17,11 @@ from llama_stack.core.datatypes import (
ToolGroupInput,
VectorStoresConfig,
)
from llama_stack.core.storage.datatypes import (
InferenceStoreReference,
KVStoreReference,
SqlStoreReference,
)
from llama_stack.core.utils.dynamic import instantiate_class_type
from llama_stack.distributions.template import DistributionTemplate, RunConfigSettings
from llama_stack.providers.datatypes import RemoteProviderSpec
@ -36,6 +41,7 @@ from llama_stack.providers.remote.vector_io.pgvector.config import (
)
from llama_stack.providers.remote.vector_io.qdrant.config import QdrantVectorIOConfig
from llama_stack.providers.remote.vector_io.weaviate.config import WeaviateVectorIOConfig
from llama_stack.providers.utils.kvstore.config import PostgresKVStoreConfig
from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig
@ -181,6 +187,62 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
provider_shield_id="${env.CODE_SCANNER_MODEL:=}",
),
]
postgres_config = PostgresSqlStoreConfig.sample_run_config()
default_overrides = {
"inference": remote_inference_providers + [embedding_provider],
"vector_io": [
Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="sqlite-vec",
provider_type="inline::sqlite-vec",
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.MILVUS_URL:+milvus}",
provider_type="inline::milvus",
config=MilvusVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.CHROMADB_URL:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}/",
url="${env.CHROMADB_URL:=}",
),
),
Provider(
provider_id="${env.PGVECTOR_DB:+pgvector}",
provider_type="remote::pgvector",
config=PGVectorVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
db="${env.PGVECTOR_DB:=}",
user="${env.PGVECTOR_USER:=}",
password="${env.PGVECTOR_PASSWORD:=}",
),
),
Provider(
provider_id="${env.QDRANT_URL:+qdrant}",
provider_type="remote::qdrant",
config=QdrantVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
url="${env.QDRANT_URL:=}",
),
),
Provider(
provider_id="${env.WEAVIATE_CLUSTER_URL:+weaviate}",
provider_type="remote::weaviate",
config=WeaviateVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
cluster_url="${env.WEAVIATE_CLUSTER_URL:=}",
),
),
],
"files": [files_provider],
}
return DistributionTemplate(
name=name,
@ -189,64 +251,10 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
container_image=None,
template_path=None,
providers=providers,
additional_pip_packages=PostgresSqlStoreConfig.pip_packages(),
additional_pip_packages=list(set(PostgresSqlStoreConfig.pip_packages() + PostgresKVStoreConfig.pip_packages())),
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": remote_inference_providers + [embedding_provider],
"vector_io": [
Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="sqlite-vec",
provider_type="inline::sqlite-vec",
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.MILVUS_URL:+milvus}",
provider_type="inline::milvus",
config=MilvusVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
),
Provider(
provider_id="${env.CHROMADB_URL:+chromadb}",
provider_type="remote::chromadb",
config=ChromaVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}/",
url="${env.CHROMADB_URL:=}",
),
),
Provider(
provider_id="${env.PGVECTOR_DB:+pgvector}",
provider_type="remote::pgvector",
config=PGVectorVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
db="${env.PGVECTOR_DB:=}",
user="${env.PGVECTOR_USER:=}",
password="${env.PGVECTOR_PASSWORD:=}",
),
),
Provider(
provider_id="${env.QDRANT_URL:+qdrant}",
provider_type="remote::qdrant",
config=QdrantVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
url="${env.QDRANT_URL:=}",
),
),
Provider(
provider_id="${env.WEAVIATE_CLUSTER_URL:+weaviate}",
provider_type="remote::weaviate",
config=WeaviateVectorIOConfig.sample_run_config(
f"~/.llama/distributions/{name}",
cluster_url="${env.WEAVIATE_CLUSTER_URL:=}",
),
),
],
"files": [files_provider],
},
provider_overrides=default_overrides,
default_models=[],
default_tool_groups=default_tool_groups,
default_shields=default_shields,
@ -261,6 +269,55 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate:
default_shield_id="llama-guard",
),
),
"run-with-postgres-store.yaml": RunConfigSettings(
provider_overrides={
**default_overrides,
"agents": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
config=dict(
persistence_store=postgres_config,
responses_store=postgres_config,
),
)
],
"batches": [
Provider(
provider_id="reference",
provider_type="inline::reference",
config=dict(
kvstore=KVStoreReference(
backend="kv_postgres",
namespace="batches",
).model_dump(exclude_none=True),
),
)
],
},
storage_backends={
"kv_postgres": PostgresKVStoreConfig.sample_run_config(),
"sql_postgres": postgres_config,
},
storage_stores={
"metadata": KVStoreReference(
backend="kv_postgres",
namespace="registry",
).model_dump(exclude_none=True),
"inference": InferenceStoreReference(
backend="sql_postgres",
table_name="inference_store",
).model_dump(exclude_none=True),
"conversations": SqlStoreReference(
backend="sql_postgres",
table_name="openai_conversations",
).model_dump(exclude_none=True),
"prompts": KVStoreReference(
backend="kv_postgres",
namespace="prompts",
).model_dump(exclude_none=True),
},
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (