mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-06 20:44:58 +00:00
Merge branch 'main' into chroma
This commit is contained in:
commit
c71bcd5479
124 changed files with 25574 additions and 2425 deletions
|
@ -131,6 +131,15 @@ class ProviderSpec(BaseModel):
|
|||
""",
|
||||
)
|
||||
|
||||
pip_packages: list[str] = Field(
|
||||
default_factory=list,
|
||||
description="The pip dependencies needed for this implementation",
|
||||
)
|
||||
|
||||
provider_data_validator: str | None = Field(
|
||||
default=None,
|
||||
)
|
||||
|
||||
is_external: bool = Field(default=False, description="Notes whether this provider is an external provider.")
|
||||
|
||||
# used internally by the resolver; this is a hack for now
|
||||
|
@ -145,45 +154,8 @@ class RoutingTable(Protocol):
|
|||
async def get_provider_impl(self, routing_key: str) -> Any: ...
|
||||
|
||||
|
||||
# TODO: this can now be inlined into RemoteProviderSpec
|
||||
@json_schema_type
|
||||
class AdapterSpec(BaseModel):
|
||||
adapter_type: str = Field(
|
||||
...,
|
||||
description="Unique identifier for this adapter",
|
||||
)
|
||||
module: str = Field(
|
||||
default_factory=str,
|
||||
description="""
|
||||
Fully-qualified name of the module to import. The module is expected to have:
|
||||
|
||||
- `get_adapter_impl(config, deps)`: returns the adapter implementation
|
||||
""",
|
||||
)
|
||||
pip_packages: list[str] = Field(
|
||||
default_factory=list,
|
||||
description="The pip dependencies needed for this implementation",
|
||||
)
|
||||
config_class: str = Field(
|
||||
description="Fully-qualified classname of the config for this provider",
|
||||
)
|
||||
provider_data_validator: str | None = Field(
|
||||
default=None,
|
||||
)
|
||||
description: str | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
A description of the provider. This is used to display in the documentation.
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class InlineProviderSpec(ProviderSpec):
|
||||
pip_packages: list[str] = Field(
|
||||
default_factory=list,
|
||||
description="The pip dependencies needed for this implementation",
|
||||
)
|
||||
container_image: str | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
|
@ -191,10 +163,6 @@ The container image to use for this implementation. If one is provided, pip_pack
|
|||
If a provider depends on other providers, the dependencies MUST NOT specify a container image.
|
||||
""",
|
||||
)
|
||||
# module field is inherited from ProviderSpec
|
||||
provider_data_validator: str | None = Field(
|
||||
default=None,
|
||||
)
|
||||
description: str | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
|
@ -223,10 +191,15 @@ class RemoteProviderConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class RemoteProviderSpec(ProviderSpec):
|
||||
adapter: AdapterSpec = Field(
|
||||
adapter_type: str = Field(
|
||||
...,
|
||||
description="Unique identifier for this adapter",
|
||||
)
|
||||
|
||||
description: str | None = Field(
|
||||
default=None,
|
||||
description="""
|
||||
If some code is needed to convert the remote responses into Llama Stack compatible
|
||||
API responses, specify the adapter here.
|
||||
A description of the provider. This is used to display in the documentation.
|
||||
""",
|
||||
)
|
||||
|
||||
|
@ -234,33 +207,6 @@ API responses, specify the adapter here.
|
|||
def container_image(self) -> str | None:
|
||||
return None
|
||||
|
||||
# module field is inherited from ProviderSpec
|
||||
|
||||
@property
|
||||
def pip_packages(self) -> list[str]:
|
||||
return self.adapter.pip_packages
|
||||
|
||||
@property
|
||||
def provider_data_validator(self) -> str | None:
|
||||
return self.adapter.provider_data_validator
|
||||
|
||||
|
||||
def remote_provider_spec(
|
||||
api: Api,
|
||||
adapter: AdapterSpec,
|
||||
api_dependencies: list[Api] | None = None,
|
||||
optional_api_dependencies: list[Api] | None = None,
|
||||
) -> RemoteProviderSpec:
|
||||
return RemoteProviderSpec(
|
||||
api=api,
|
||||
provider_type=f"remote::{adapter.adapter_type}",
|
||||
config_class=adapter.config_class,
|
||||
module=adapter.module,
|
||||
adapter=adapter,
|
||||
api_dependencies=api_dependencies or [],
|
||||
optional_api_dependencies=optional_api_dependencies or [],
|
||||
)
|
||||
|
||||
|
||||
class HealthStatus(StrEnum):
|
||||
OK = "OK"
|
||||
|
|
|
@ -75,6 +75,13 @@ class MetaReferenceEvalImpl(
|
|||
)
|
||||
self.benchmarks[task_def.identifier] = task_def
|
||||
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
if benchmark_id in self.benchmarks:
|
||||
del self.benchmarks[benchmark_id]
|
||||
|
||||
key = f"{EVAL_TASKS_PREFIX}{benchmark_id}"
|
||||
await self.kvstore.delete(key)
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
|
|
|
@ -63,6 +63,9 @@ class LlmAsJudgeScoringImpl(
|
|||
async def register_scoring_function(self, function_def: ScoringFn) -> None:
|
||||
self.llm_as_judge_fn.register_scoring_fn_def(function_def)
|
||||
|
||||
async def unregister_scoring_function(self, scoring_fn_id: str) -> None:
|
||||
self.llm_as_judge_fn.unregister_scoring_fn_def(scoring_fn_id)
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
|
@ -6,11 +6,10 @@
|
|||
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
RemoteProviderSpec,
|
||||
)
|
||||
|
||||
|
||||
|
@ -25,28 +24,26 @@ def available_providers() -> list[ProviderSpec]:
|
|||
api_dependencies=[],
|
||||
description="Local filesystem-based dataset I/O provider for reading and writing datasets to local storage.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.datasetio,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="huggingface",
|
||||
pip_packages=[
|
||||
"datasets>=4.0.0",
|
||||
],
|
||||
module="llama_stack.providers.remote.datasetio.huggingface",
|
||||
config_class="llama_stack.providers.remote.datasetio.huggingface.HuggingfaceDatasetIOConfig",
|
||||
description="HuggingFace datasets provider for accessing and managing datasets from the HuggingFace Hub.",
|
||||
),
|
||||
adapter_type="huggingface",
|
||||
provider_type="remote::huggingface",
|
||||
pip_packages=[
|
||||
"datasets>=4.0.0",
|
||||
],
|
||||
module="llama_stack.providers.remote.datasetio.huggingface",
|
||||
config_class="llama_stack.providers.remote.datasetio.huggingface.HuggingfaceDatasetIOConfig",
|
||||
description="HuggingFace datasets provider for accessing and managing datasets from the HuggingFace Hub.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.datasetio,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[
|
||||
"datasets>=4.0.0",
|
||||
],
|
||||
module="llama_stack.providers.remote.datasetio.nvidia",
|
||||
config_class="llama_stack.providers.remote.datasetio.nvidia.NvidiaDatasetIOConfig",
|
||||
description="NVIDIA's dataset I/O provider for accessing datasets from NVIDIA's data platform.",
|
||||
),
|
||||
adapter_type="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
module="llama_stack.providers.remote.datasetio.nvidia",
|
||||
config_class="llama_stack.providers.remote.datasetio.nvidia.NvidiaDatasetIOConfig",
|
||||
pip_packages=[
|
||||
"datasets>=4.0.0",
|
||||
],
|
||||
description="NVIDIA's dataset I/O provider for accessing datasets from NVIDIA's data platform.",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from llama_stack.providers.datatypes import AdapterSpec, Api, InlineProviderSpec, ProviderSpec, remote_provider_spec
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec, RemoteProviderSpec
|
||||
|
||||
|
||||
def available_providers() -> list[ProviderSpec]:
|
||||
|
@ -25,17 +25,16 @@ def available_providers() -> list[ProviderSpec]:
|
|||
],
|
||||
description="Meta's reference implementation of evaluation tasks with support for multiple languages and evaluation metrics.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.eval,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[
|
||||
"requests",
|
||||
],
|
||||
module="llama_stack.providers.remote.eval.nvidia",
|
||||
config_class="llama_stack.providers.remote.eval.nvidia.NVIDIAEvalConfig",
|
||||
description="NVIDIA's evaluation provider for running evaluation tasks on NVIDIA's platform.",
|
||||
),
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[
|
||||
"requests",
|
||||
],
|
||||
provider_type="remote::nvidia",
|
||||
module="llama_stack.providers.remote.eval.nvidia",
|
||||
config_class="llama_stack.providers.remote.eval.nvidia.NVIDIAEvalConfig",
|
||||
description="NVIDIA's evaluation provider for running evaluation tasks on NVIDIA's platform.",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
|
|
|
@ -4,13 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec, RemoteProviderSpec
|
||||
from llama_stack.providers.utils.sqlstore.sqlstore import sql_store_pip_packages
|
||||
|
||||
|
||||
|
@ -25,14 +19,13 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.files.localfs.config.LocalfsFilesImplConfig",
|
||||
description="Local filesystem-based file storage provider for managing files and documents locally.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.files,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="s3",
|
||||
pip_packages=["boto3"] + sql_store_pip_packages,
|
||||
module="llama_stack.providers.remote.files.s3",
|
||||
config_class="llama_stack.providers.remote.files.s3.config.S3FilesImplConfig",
|
||||
description="AWS S3-based file storage provider for scalable cloud file management with metadata persistence.",
|
||||
),
|
||||
provider_type="remote::s3",
|
||||
adapter_type="s3",
|
||||
pip_packages=["boto3"] + sql_store_pip_packages,
|
||||
module="llama_stack.providers.remote.files.s3",
|
||||
config_class="llama_stack.providers.remote.files.s3.config.S3FilesImplConfig",
|
||||
description="AWS S3-based file storage provider for scalable cloud file management with metadata persistence.",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -6,11 +6,10 @@
|
|||
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
RemoteProviderSpec,
|
||||
)
|
||||
|
||||
META_REFERENCE_DEPS = [
|
||||
|
@ -49,176 +48,167 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.inference.sentence_transformers.config.SentenceTransformersInferenceConfig",
|
||||
description="Sentence Transformers inference provider for text embeddings and similarity search.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="cerebras",
|
||||
pip_packages=[
|
||||
"cerebras_cloud_sdk",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.cerebras",
|
||||
config_class="llama_stack.providers.remote.inference.cerebras.CerebrasImplConfig",
|
||||
description="Cerebras inference provider for running models on Cerebras Cloud platform.",
|
||||
),
|
||||
adapter_type="cerebras",
|
||||
provider_type="remote::cerebras",
|
||||
pip_packages=[
|
||||
"cerebras_cloud_sdk",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.cerebras",
|
||||
config_class="llama_stack.providers.remote.inference.cerebras.CerebrasImplConfig",
|
||||
description="Cerebras inference provider for running models on Cerebras Cloud platform.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="ollama",
|
||||
pip_packages=["ollama", "aiohttp", "h11>=0.16.0"],
|
||||
config_class="llama_stack.providers.remote.inference.ollama.OllamaImplConfig",
|
||||
module="llama_stack.providers.remote.inference.ollama",
|
||||
description="Ollama inference provider for running local models through the Ollama runtime.",
|
||||
),
|
||||
adapter_type="ollama",
|
||||
provider_type="remote::ollama",
|
||||
pip_packages=["ollama", "aiohttp", "h11>=0.16.0"],
|
||||
config_class="llama_stack.providers.remote.inference.ollama.OllamaImplConfig",
|
||||
module="llama_stack.providers.remote.inference.ollama",
|
||||
description="Ollama inference provider for running local models through the Ollama runtime.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="vllm",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.vllm",
|
||||
config_class="llama_stack.providers.remote.inference.vllm.VLLMInferenceAdapterConfig",
|
||||
description="Remote vLLM inference provider for connecting to vLLM servers.",
|
||||
),
|
||||
adapter_type="vllm",
|
||||
provider_type="remote::vllm",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.vllm",
|
||||
config_class="llama_stack.providers.remote.inference.vllm.VLLMInferenceAdapterConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.vllm.VLLMProviderDataValidator",
|
||||
description="Remote vLLM inference provider for connecting to vLLM servers.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="tgi",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.TGIImplConfig",
|
||||
description="Text Generation Inference (TGI) provider for HuggingFace model serving.",
|
||||
),
|
||||
adapter_type="tgi",
|
||||
provider_type="remote::tgi",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.TGIImplConfig",
|
||||
description="Text Generation Inference (TGI) provider for HuggingFace model serving.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="hf::serverless",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.InferenceAPIImplConfig",
|
||||
description="HuggingFace Inference API serverless provider for on-demand model inference.",
|
||||
),
|
||||
adapter_type="hf::serverless",
|
||||
provider_type="remote::hf::serverless",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.InferenceAPIImplConfig",
|
||||
description="HuggingFace Inference API serverless provider for on-demand model inference.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="hf::endpoint",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.InferenceEndpointImplConfig",
|
||||
description="HuggingFace Inference Endpoints provider for dedicated model serving.",
|
||||
),
|
||||
provider_type="remote::hf::endpoint",
|
||||
adapter_type="hf::endpoint",
|
||||
pip_packages=["huggingface_hub", "aiohttp"],
|
||||
module="llama_stack.providers.remote.inference.tgi",
|
||||
config_class="llama_stack.providers.remote.inference.tgi.InferenceEndpointImplConfig",
|
||||
description="HuggingFace Inference Endpoints provider for dedicated model serving.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="fireworks",
|
||||
pip_packages=[
|
||||
"fireworks-ai<=0.17.16",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.fireworks",
|
||||
config_class="llama_stack.providers.remote.inference.fireworks.FireworksImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.fireworks.FireworksProviderDataValidator",
|
||||
description="Fireworks AI inference provider for Llama models and other AI models on the Fireworks platform.",
|
||||
),
|
||||
adapter_type="fireworks",
|
||||
provider_type="remote::fireworks",
|
||||
pip_packages=[
|
||||
"fireworks-ai<=0.17.16",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.fireworks",
|
||||
config_class="llama_stack.providers.remote.inference.fireworks.FireworksImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.fireworks.FireworksProviderDataValidator",
|
||||
description="Fireworks AI inference provider for Llama models and other AI models on the Fireworks platform.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="together",
|
||||
pip_packages=[
|
||||
"together",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.together",
|
||||
config_class="llama_stack.providers.remote.inference.together.TogetherImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
|
||||
description="Together AI inference provider for open-source models and collaborative AI development.",
|
||||
),
|
||||
adapter_type="together",
|
||||
provider_type="remote::together",
|
||||
pip_packages=[
|
||||
"together",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.together",
|
||||
config_class="llama_stack.providers.remote.inference.together.TogetherImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
|
||||
description="Together AI inference provider for open-source models and collaborative AI development.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="bedrock",
|
||||
pip_packages=["boto3"],
|
||||
module="llama_stack.providers.remote.inference.bedrock",
|
||||
config_class="llama_stack.providers.remote.inference.bedrock.BedrockConfig",
|
||||
description="AWS Bedrock inference provider for accessing various AI models through AWS's managed service.",
|
||||
),
|
||||
adapter_type="bedrock",
|
||||
provider_type="remote::bedrock",
|
||||
pip_packages=["boto3"],
|
||||
module="llama_stack.providers.remote.inference.bedrock",
|
||||
config_class="llama_stack.providers.remote.inference.bedrock.BedrockConfig",
|
||||
description="AWS Bedrock inference provider for accessing various AI models through AWS's managed service.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="databricks",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.databricks",
|
||||
config_class="llama_stack.providers.remote.inference.databricks.DatabricksImplConfig",
|
||||
description="Databricks inference provider for running models on Databricks' unified analytics platform.",
|
||||
),
|
||||
adapter_type="databricks",
|
||||
provider_type="remote::databricks",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.databricks",
|
||||
config_class="llama_stack.providers.remote.inference.databricks.DatabricksImplConfig",
|
||||
description="Databricks inference provider for running models on Databricks' unified analytics platform.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.nvidia",
|
||||
config_class="llama_stack.providers.remote.inference.nvidia.NVIDIAConfig",
|
||||
description="NVIDIA inference provider for accessing NVIDIA NIM models and AI services.",
|
||||
),
|
||||
adapter_type="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.nvidia",
|
||||
config_class="llama_stack.providers.remote.inference.nvidia.NVIDIAConfig",
|
||||
description="NVIDIA inference provider for accessing NVIDIA NIM models and AI services.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="runpod",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.runpod",
|
||||
config_class="llama_stack.providers.remote.inference.runpod.RunpodImplConfig",
|
||||
description="RunPod inference provider for running models on RunPod's cloud GPU platform.",
|
||||
),
|
||||
adapter_type="runpod",
|
||||
provider_type="remote::runpod",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.runpod",
|
||||
config_class="llama_stack.providers.remote.inference.runpod.RunpodImplConfig",
|
||||
description="RunPod inference provider for running models on RunPod's cloud GPU platform.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="openai",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.openai",
|
||||
config_class="llama_stack.providers.remote.inference.openai.OpenAIConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.openai.config.OpenAIProviderDataValidator",
|
||||
description="OpenAI inference provider for accessing GPT models and other OpenAI services.",
|
||||
),
|
||||
adapter_type="openai",
|
||||
provider_type="remote::openai",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.openai",
|
||||
config_class="llama_stack.providers.remote.inference.openai.OpenAIConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.openai.config.OpenAIProviderDataValidator",
|
||||
description="OpenAI inference provider for accessing GPT models and other OpenAI services.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="anthropic",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.anthropic",
|
||||
config_class="llama_stack.providers.remote.inference.anthropic.AnthropicConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.anthropic.config.AnthropicProviderDataValidator",
|
||||
description="Anthropic inference provider for accessing Claude models and Anthropic's AI services.",
|
||||
),
|
||||
adapter_type="anthropic",
|
||||
provider_type="remote::anthropic",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.anthropic",
|
||||
config_class="llama_stack.providers.remote.inference.anthropic.AnthropicConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.anthropic.config.AnthropicProviderDataValidator",
|
||||
description="Anthropic inference provider for accessing Claude models and Anthropic's AI services.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="gemini",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.gemini",
|
||||
config_class="llama_stack.providers.remote.inference.gemini.GeminiConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.gemini.config.GeminiProviderDataValidator",
|
||||
description="Google Gemini inference provider for accessing Gemini models and Google's AI services.",
|
||||
),
|
||||
adapter_type="gemini",
|
||||
provider_type="remote::gemini",
|
||||
pip_packages=[
|
||||
"litellm",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.gemini",
|
||||
config_class="llama_stack.providers.remote.inference.gemini.GeminiConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.gemini.config.GeminiProviderDataValidator",
|
||||
description="Google Gemini inference provider for accessing Gemini models and Google's AI services.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="vertexai",
|
||||
pip_packages=["litellm", "google-cloud-aiplatform"],
|
||||
module="llama_stack.providers.remote.inference.vertexai",
|
||||
config_class="llama_stack.providers.remote.inference.vertexai.VertexAIConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.vertexai.config.VertexAIProviderDataValidator",
|
||||
description="""Google Vertex AI inference provider enables you to use Google's Gemini models through Google Cloud's Vertex AI platform, providing several advantages:
|
||||
adapter_type="vertexai",
|
||||
provider_type="remote::vertexai",
|
||||
pip_packages=[
|
||||
"litellm",
|
||||
"google-cloud-aiplatform",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.vertexai",
|
||||
config_class="llama_stack.providers.remote.inference.vertexai.VertexAIConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.vertexai.config.VertexAIProviderDataValidator",
|
||||
description="""Google Vertex AI inference provider enables you to use Google's Gemini models through Google Cloud's Vertex AI platform, providing several advantages:
|
||||
|
||||
• Enterprise-grade security: Uses Google Cloud's security controls and IAM
|
||||
• Better integration: Seamless integration with other Google Cloud services
|
||||
|
@ -238,76 +228,73 @@ Available Models:
|
|||
- vertex_ai/gemini-2.0-flash
|
||||
- vertex_ai/gemini-2.5-flash
|
||||
- vertex_ai/gemini-2.5-pro""",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="groq",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.groq",
|
||||
config_class="llama_stack.providers.remote.inference.groq.GroqConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.groq.config.GroqProviderDataValidator",
|
||||
description="Groq inference provider for ultra-fast inference using Groq's LPU technology.",
|
||||
),
|
||||
adapter_type="groq",
|
||||
provider_type="remote::groq",
|
||||
pip_packages=[
|
||||
"litellm",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.groq",
|
||||
config_class="llama_stack.providers.remote.inference.groq.GroqConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.groq.config.GroqProviderDataValidator",
|
||||
description="Groq inference provider for ultra-fast inference using Groq's LPU technology.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="llama-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.llama_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.llama_openai_compat.config.LlamaCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.llama_openai_compat.config.LlamaProviderDataValidator",
|
||||
description="Llama OpenAI-compatible provider for using Llama models with OpenAI API format.",
|
||||
),
|
||||
adapter_type="llama-openai-compat",
|
||||
provider_type="remote::llama-openai-compat",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.llama_openai_compat",
|
||||
config_class="llama_stack.providers.remote.inference.llama_openai_compat.config.LlamaCompatConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.llama_openai_compat.config.LlamaProviderDataValidator",
|
||||
description="Llama OpenAI-compatible provider for using Llama models with OpenAI API format.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="sambanova",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.sambanova",
|
||||
config_class="llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.sambanova.config.SambaNovaProviderDataValidator",
|
||||
description="SambaNova inference provider for running models on SambaNova's dataflow architecture.",
|
||||
),
|
||||
adapter_type="sambanova",
|
||||
provider_type="remote::sambanova",
|
||||
pip_packages=[
|
||||
"litellm",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.sambanova",
|
||||
config_class="llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.sambanova.config.SambaNovaProviderDataValidator",
|
||||
description="SambaNova inference provider for running models on SambaNova's dataflow architecture.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="passthrough",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.passthrough",
|
||||
config_class="llama_stack.providers.remote.inference.passthrough.PassthroughImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.passthrough.PassthroughProviderDataValidator",
|
||||
description="Passthrough inference provider for connecting to any external inference service not directly supported.",
|
||||
),
|
||||
adapter_type="passthrough",
|
||||
provider_type="remote::passthrough",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.remote.inference.passthrough",
|
||||
config_class="llama_stack.providers.remote.inference.passthrough.PassthroughImplConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.passthrough.PassthroughProviderDataValidator",
|
||||
description="Passthrough inference provider for connecting to any external inference service not directly supported.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="watsonx",
|
||||
pip_packages=["ibm_watsonx_ai"],
|
||||
module="llama_stack.providers.remote.inference.watsonx",
|
||||
config_class="llama_stack.providers.remote.inference.watsonx.WatsonXConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.watsonx.WatsonXProviderDataValidator",
|
||||
description="IBM WatsonX inference provider for accessing AI models on IBM's WatsonX platform.",
|
||||
),
|
||||
adapter_type="watsonx",
|
||||
provider_type="remote::watsonx",
|
||||
pip_packages=["ibm_watsonx_ai"],
|
||||
module="llama_stack.providers.remote.inference.watsonx",
|
||||
config_class="llama_stack.providers.remote.inference.watsonx.WatsonXConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.watsonx.WatsonXProviderDataValidator",
|
||||
description="IBM WatsonX inference provider for accessing AI models on IBM's WatsonX platform.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="azure",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.azure",
|
||||
config_class="llama_stack.providers.remote.inference.azure.AzureConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.azure.config.AzureProviderDataValidator",
|
||||
description="""
|
||||
provider_type="remote::azure",
|
||||
adapter_type="azure",
|
||||
pip_packages=["litellm"],
|
||||
module="llama_stack.providers.remote.inference.azure",
|
||||
config_class="llama_stack.providers.remote.inference.azure.AzureConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.azure.config.AzureProviderDataValidator",
|
||||
description="""
|
||||
Azure OpenAI inference provider for accessing GPT models and other Azure services.
|
||||
Provider documentation
|
||||
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/overview
|
||||
""",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
from typing import cast
|
||||
|
||||
from llama_stack.providers.datatypes import AdapterSpec, Api, InlineProviderSpec, ProviderSpec, remote_provider_spec
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec, RemoteProviderSpec
|
||||
|
||||
# We provide two versions of these providers so that distributions can package the appropriate version of torch.
|
||||
# The CPU version is used for distributions that don't have GPU support -- they result in smaller container images.
|
||||
|
@ -57,14 +57,13 @@ def available_providers() -> list[ProviderSpec]:
|
|||
],
|
||||
description="HuggingFace-based post-training provider for fine-tuning models using the HuggingFace ecosystem.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.post_training,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=["requests", "aiohttp"],
|
||||
module="llama_stack.providers.remote.post_training.nvidia",
|
||||
config_class="llama_stack.providers.remote.post_training.nvidia.NvidiaPostTrainingConfig",
|
||||
description="NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.",
|
||||
),
|
||||
adapter_type="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
pip_packages=["requests", "aiohttp"],
|
||||
module="llama_stack.providers.remote.post_training.nvidia",
|
||||
config_class="llama_stack.providers.remote.post_training.nvidia.NvidiaPostTrainingConfig",
|
||||
description="NVIDIA's post-training provider for fine-tuning models on NVIDIA's platform.",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -6,11 +6,10 @@
|
|||
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
RemoteProviderSpec,
|
||||
)
|
||||
|
||||
|
||||
|
@ -48,35 +47,32 @@ def available_providers() -> list[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.safety.code_scanner.CodeScannerConfig",
|
||||
description="Code Scanner safety provider for detecting security vulnerabilities and unsafe code patterns.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.safety,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="bedrock",
|
||||
pip_packages=["boto3"],
|
||||
module="llama_stack.providers.remote.safety.bedrock",
|
||||
config_class="llama_stack.providers.remote.safety.bedrock.BedrockSafetyConfig",
|
||||
description="AWS Bedrock safety provider for content moderation using AWS's safety services.",
|
||||
),
|
||||
adapter_type="bedrock",
|
||||
provider_type="remote::bedrock",
|
||||
pip_packages=["boto3"],
|
||||
module="llama_stack.providers.remote.safety.bedrock",
|
||||
config_class="llama_stack.providers.remote.safety.bedrock.BedrockSafetyConfig",
|
||||
description="AWS Bedrock safety provider for content moderation using AWS's safety services.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.safety,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=["requests"],
|
||||
module="llama_stack.providers.remote.safety.nvidia",
|
||||
config_class="llama_stack.providers.remote.safety.nvidia.NVIDIASafetyConfig",
|
||||
description="NVIDIA's safety provider for content moderation and safety filtering.",
|
||||
),
|
||||
adapter_type="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
pip_packages=["requests"],
|
||||
module="llama_stack.providers.remote.safety.nvidia",
|
||||
config_class="llama_stack.providers.remote.safety.nvidia.NVIDIASafetyConfig",
|
||||
description="NVIDIA's safety provider for content moderation and safety filtering.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.safety,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="sambanova",
|
||||
pip_packages=["litellm", "requests"],
|
||||
module="llama_stack.providers.remote.safety.sambanova",
|
||||
config_class="llama_stack.providers.remote.safety.sambanova.SambaNovaSafetyConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.safety.sambanova.config.SambaNovaProviderDataValidator",
|
||||
description="SambaNova's safety provider for content moderation and safety filtering.",
|
||||
),
|
||||
adapter_type="sambanova",
|
||||
provider_type="remote::sambanova",
|
||||
pip_packages=["litellm", "requests"],
|
||||
module="llama_stack.providers.remote.safety.sambanova",
|
||||
config_class="llama_stack.providers.remote.safety.sambanova.SambaNovaSafetyConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.safety.sambanova.config.SambaNovaProviderDataValidator",
|
||||
description="SambaNova's safety provider for content moderation and safety filtering.",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -6,11 +6,10 @@
|
|||
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
RemoteProviderSpec,
|
||||
)
|
||||
|
||||
|
||||
|
@ -35,59 +34,54 @@ def available_providers() -> list[ProviderSpec]:
|
|||
api_dependencies=[Api.vector_io, Api.inference, Api.files],
|
||||
description="RAG (Retrieval-Augmented Generation) tool runtime for document ingestion, chunking, and semantic search.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.tool_runtime,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="brave-search",
|
||||
module="llama_stack.providers.remote.tool_runtime.brave_search",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.brave_search.config.BraveSearchToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.brave_search.BraveSearchToolProviderDataValidator",
|
||||
description="Brave Search tool for web search capabilities with privacy-focused results.",
|
||||
),
|
||||
adapter_type="brave-search",
|
||||
provider_type="remote::brave-search",
|
||||
module="llama_stack.providers.remote.tool_runtime.brave_search",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.brave_search.config.BraveSearchToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.brave_search.BraveSearchToolProviderDataValidator",
|
||||
description="Brave Search tool for web search capabilities with privacy-focused results.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.tool_runtime,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="bing-search",
|
||||
module="llama_stack.providers.remote.tool_runtime.bing_search",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.bing_search.config.BingSearchToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.bing_search.BingSearchToolProviderDataValidator",
|
||||
description="Bing Search tool for web search capabilities using Microsoft's search engine.",
|
||||
),
|
||||
adapter_type="bing-search",
|
||||
provider_type="remote::bing-search",
|
||||
module="llama_stack.providers.remote.tool_runtime.bing_search",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.bing_search.config.BingSearchToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.bing_search.BingSearchToolProviderDataValidator",
|
||||
description="Bing Search tool for web search capabilities using Microsoft's search engine.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.tool_runtime,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="tavily-search",
|
||||
module="llama_stack.providers.remote.tool_runtime.tavily_search",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.tavily_search.config.TavilySearchToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.tavily_search.TavilySearchToolProviderDataValidator",
|
||||
description="Tavily Search tool for AI-optimized web search with structured results.",
|
||||
),
|
||||
adapter_type="tavily-search",
|
||||
provider_type="remote::tavily-search",
|
||||
module="llama_stack.providers.remote.tool_runtime.tavily_search",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.tavily_search.config.TavilySearchToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.tavily_search.TavilySearchToolProviderDataValidator",
|
||||
description="Tavily Search tool for AI-optimized web search with structured results.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.tool_runtime,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="wolfram-alpha",
|
||||
module="llama_stack.providers.remote.tool_runtime.wolfram_alpha",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.wolfram_alpha.config.WolframAlphaToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.wolfram_alpha.WolframAlphaToolProviderDataValidator",
|
||||
description="Wolfram Alpha tool for computational knowledge and mathematical calculations.",
|
||||
),
|
||||
adapter_type="wolfram-alpha",
|
||||
provider_type="remote::wolfram-alpha",
|
||||
module="llama_stack.providers.remote.tool_runtime.wolfram_alpha",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.wolfram_alpha.config.WolframAlphaToolConfig",
|
||||
pip_packages=["requests"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.wolfram_alpha.WolframAlphaToolProviderDataValidator",
|
||||
description="Wolfram Alpha tool for computational knowledge and mathematical calculations.",
|
||||
),
|
||||
remote_provider_spec(
|
||||
RemoteProviderSpec(
|
||||
api=Api.tool_runtime,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="model-context-protocol",
|
||||
module="llama_stack.providers.remote.tool_runtime.model_context_protocol",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.model_context_protocol.config.MCPProviderConfig",
|
||||
pip_packages=["mcp>=1.8.1"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.model_context_protocol.config.MCPProviderDataValidator",
|
||||
description="Model Context Protocol (MCP) tool for standardized tool calling and context management.",
|
||||
),
|
||||
adapter_type="model-context-protocol",
|
||||
provider_type="remote::model-context-protocol",
|
||||
module="llama_stack.providers.remote.tool_runtime.model_context_protocol",
|
||||
config_class="llama_stack.providers.remote.tool_runtime.model_context_protocol.config.MCPProviderConfig",
|
||||
pip_packages=["mcp>=1.8.1"],
|
||||
provider_data_validator="llama_stack.providers.remote.tool_runtime.model_context_protocol.config.MCPProviderDataValidator",
|
||||
description="Model Context Protocol (MCP) tool for standardized tool calling and context management.",
|
||||
),
|
||||
]
|
||||
|
|
|
@ -6,11 +6,10 @@
|
|||
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
InlineProviderSpec,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
RemoteProviderSpec,
|
||||
)
|
||||
|
||||
|
||||
|
@ -300,14 +299,16 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f
|
|||
Please refer to the sqlite-vec provider documentation.
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="chromadb",
|
||||
pip_packages=["chromadb-client"],
|
||||
module="llama_stack.providers.remote.vector_io.chroma",
|
||||
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
|
||||
description="""
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="chromadb",
|
||||
provider_type="remote::chromadb",
|
||||
pip_packages=["chromadb-client"],
|
||||
module="llama_stack.providers.remote.vector_io.chroma",
|
||||
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
||||
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
@ -340,9 +341,6 @@ pip install chromadb
|
|||
## Documentation
|
||||
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.
|
||||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
@ -387,14 +385,16 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti
|
|||
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="pgvector",
|
||||
pip_packages=["psycopg2-binary"],
|
||||
module="llama_stack.providers.remote.vector_io.pgvector",
|
||||
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
|
||||
description="""
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="pgvector",
|
||||
provider_type="remote::pgvector",
|
||||
pip_packages=["psycopg2-binary"],
|
||||
module="llama_stack.providers.remote.vector_io.pgvector",
|
||||
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
[PGVector](https://github.com/pgvector/pgvector) is a remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
That means you'll get fast and efficient vector retrieval.
|
||||
|
@ -495,19 +495,18 @@ docker pull pgvector/pgvector:pg17
|
|||
## Documentation
|
||||
See [PGVector's documentation](https://github.com/pgvector/pgvector) for more details about PGVector in general.
|
||||
""",
|
||||
),
|
||||
),
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="weaviate",
|
||||
provider_type="remote::weaviate",
|
||||
pip_packages=["weaviate-client"],
|
||||
module="llama_stack.providers.remote.vector_io.weaviate",
|
||||
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="weaviate",
|
||||
pip_packages=["weaviate-client"],
|
||||
module="llama_stack.providers.remote.vector_io.weaviate",
|
||||
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
|
||||
description="""
|
||||
description="""
|
||||
[Weaviate](https://weaviate.io/) is a vector database provider for Llama Stack.
|
||||
It allows you to store and query vectors directly within a Weaviate database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
@ -538,9 +537,6 @@ To install Weaviate see the [Weaviate quickstart documentation](https://weaviate
|
|||
## Documentation
|
||||
See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more details about Weaviate in general.
|
||||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
@ -594,28 +590,29 @@ docker pull qdrant/qdrant
|
|||
See the [Qdrant documentation](https://qdrant.tech/documentation/) for more details about Qdrant in general.
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="qdrant",
|
||||
pip_packages=["qdrant-client"],
|
||||
module="llama_stack.providers.remote.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
description="""
|
||||
Please refer to the inline provider documentation.
|
||||
""",
|
||||
),
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="qdrant",
|
||||
provider_type="remote::qdrant",
|
||||
pip_packages=["qdrant-client"],
|
||||
module="llama_stack.providers.remote.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
Please refer to the inline provider documentation.
|
||||
""",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="milvus",
|
||||
pip_packages=["pymilvus>=2.4.10"],
|
||||
module="llama_stack.providers.remote.vector_io.milvus",
|
||||
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
|
||||
description="""
|
||||
RemoteProviderSpec(
|
||||
api=Api.vector_io,
|
||||
adapter_type="milvus",
|
||||
provider_type="remote::milvus",
|
||||
pip_packages=["pymilvus>=2.4.10"],
|
||||
module="llama_stack.providers.remote.vector_io.milvus",
|
||||
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
description="""
|
||||
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within a Milvus database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
@ -806,9 +803,6 @@ See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for m
|
|||
|
||||
For more details on TLS configuration, refer to the [TLS setup guide](https://milvus.io/docs/tls.md).
|
||||
""",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
optional_api_dependencies=[Api.files],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
|
|
|
@ -51,18 +51,23 @@ class NVIDIAEvalImpl(
|
|||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def _evaluator_get(self, path):
|
||||
async def _evaluator_get(self, path: str):
|
||||
"""Helper for making GET requests to the evaluator service."""
|
||||
response = requests.get(url=f"{self.config.evaluator_url}{path}")
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def _evaluator_post(self, path, data):
|
||||
async def _evaluator_post(self, path: str, data: dict[str, Any]):
|
||||
"""Helper for making POST requests to the evaluator service."""
|
||||
response = requests.post(url=f"{self.config.evaluator_url}{path}", json=data)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
async def _evaluator_delete(self, path: str) -> None:
|
||||
"""Helper for making DELETE requests to the evaluator service."""
|
||||
response = requests.delete(url=f"{self.config.evaluator_url}{path}")
|
||||
response.raise_for_status()
|
||||
|
||||
async def register_benchmark(self, task_def: Benchmark) -> None:
|
||||
"""Register a benchmark as an evaluation configuration."""
|
||||
await self._evaluator_post(
|
||||
|
@ -75,6 +80,10 @@ class NVIDIAEvalImpl(
|
|||
},
|
||||
)
|
||||
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
"""Unregister a benchmark evaluation configuration from NeMo Evaluator."""
|
||||
await self._evaluator_delete(f"/v1/evaluation/configs/{DEFAULT_NAMESPACE}/{benchmark_id}")
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
|
|
|
@ -7,12 +7,10 @@
|
|||
|
||||
import asyncio
|
||||
import base64
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from ollama import AsyncClient # type: ignore[attr-defined]
|
||||
from openai import AsyncOpenAI
|
||||
from ollama import AsyncClient as AsyncOllamaClient
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
|
@ -37,9 +35,6 @@ from llama_stack.apis.inference import (
|
|||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
|
@ -64,15 +59,14 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
b64_encode_openai_embeddings_response,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
prepare_openai_embeddings_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
|
@ -89,6 +83,7 @@ logger = get_logger(name=__name__, category="inference::ollama")
|
|||
|
||||
|
||||
class OllamaInferenceAdapter(
|
||||
OpenAIMixin,
|
||||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
|
@ -98,23 +93,21 @@ class OllamaInferenceAdapter(
|
|||
def __init__(self, config: OllamaImplConfig) -> None:
|
||||
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
|
||||
self.config = config
|
||||
self._clients: dict[asyncio.AbstractEventLoop, AsyncClient] = {}
|
||||
self._openai_client = None
|
||||
self._clients: dict[asyncio.AbstractEventLoop, AsyncOllamaClient] = {}
|
||||
|
||||
@property
|
||||
def client(self) -> AsyncClient:
|
||||
def ollama_client(self) -> AsyncOllamaClient:
|
||||
# ollama client attaches itself to the current event loop (sadly?)
|
||||
loop = asyncio.get_running_loop()
|
||||
if loop not in self._clients:
|
||||
self._clients[loop] = AsyncClient(host=self.config.url)
|
||||
self._clients[loop] = AsyncOllamaClient(host=self.config.url)
|
||||
return self._clients[loop]
|
||||
|
||||
@property
|
||||
def openai_client(self) -> AsyncOpenAI:
|
||||
if self._openai_client is None:
|
||||
url = self.config.url.rstrip("/")
|
||||
self._openai_client = AsyncOpenAI(base_url=f"{url}/v1", api_key="ollama")
|
||||
return self._openai_client
|
||||
def get_api_key(self):
|
||||
return "NO_KEY"
|
||||
|
||||
def get_base_url(self):
|
||||
return self.config.url.rstrip("/") + "/v1"
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.info(f"checking connectivity to Ollama at `{self.config.url}`...")
|
||||
|
@ -129,7 +122,7 @@ class OllamaInferenceAdapter(
|
|||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
provider_id = self.__provider_id__
|
||||
response = await self.client.list()
|
||||
response = await self.ollama_client.list()
|
||||
|
||||
# always add the two embedding models which can be pulled on demand
|
||||
models = [
|
||||
|
@ -189,7 +182,7 @@ class OllamaInferenceAdapter(
|
|||
HealthResponse: A dictionary containing the health status.
|
||||
"""
|
||||
try:
|
||||
await self.client.ps()
|
||||
await self.ollama_client.ps()
|
||||
return HealthResponse(status=HealthStatus.OK)
|
||||
except Exception as e:
|
||||
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
||||
|
@ -238,7 +231,7 @@ class OllamaInferenceAdapter(
|
|||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.generate(**params)
|
||||
s = await self.ollama_client.generate(**params)
|
||||
async for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
|
@ -254,7 +247,7 @@ class OllamaInferenceAdapter(
|
|||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.generate(**params)
|
||||
r = await self.ollama_client.generate(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
|
@ -346,9 +339,9 @@ class OllamaInferenceAdapter(
|
|||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await self.client.chat(**params)
|
||||
r = await self.ollama_client.chat(**params)
|
||||
else:
|
||||
r = await self.client.generate(**params)
|
||||
r = await self.ollama_client.generate(**params)
|
||||
|
||||
if "message" in r:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
|
@ -372,9 +365,9 @@ class OllamaInferenceAdapter(
|
|||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
if "messages" in params:
|
||||
s = await self.client.chat(**params)
|
||||
s = await self.ollama_client.chat(**params)
|
||||
else:
|
||||
s = await self.client.generate(**params)
|
||||
s = await self.ollama_client.generate(**params)
|
||||
async for chunk in s:
|
||||
if "message" in chunk:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
|
@ -407,7 +400,7 @@ class OllamaInferenceAdapter(
|
|||
assert all(not content_has_media(content) for content in contents), (
|
||||
"Ollama does not support media for embeddings"
|
||||
)
|
||||
response = await self.client.embed(
|
||||
response = await self.ollama_client.embed(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_content_as_str(content) for content in contents],
|
||||
)
|
||||
|
@ -422,14 +415,14 @@ class OllamaInferenceAdapter(
|
|||
pass # Ignore statically unknown model, will check live listing
|
||||
|
||||
if model.model_type == ModelType.embedding:
|
||||
response = await self.client.list()
|
||||
response = await self.ollama_client.list()
|
||||
if model.provider_resource_id not in [m.model for m in response.models]:
|
||||
await self.client.pull(model.provider_resource_id)
|
||||
await self.ollama_client.pull(model.provider_resource_id)
|
||||
|
||||
# we use list() here instead of ps() -
|
||||
# - ps() only lists running models, not available models
|
||||
# - models not currently running are run by the ollama server as needed
|
||||
response = await self.client.list()
|
||||
response = await self.ollama_client.list()
|
||||
available_models = [m.model for m in response.models]
|
||||
|
||||
provider_resource_id = model.provider_resource_id
|
||||
|
@ -448,90 +441,6 @@ class OllamaInferenceAdapter(
|
|||
|
||||
return model
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
input: str | list[str],
|
||||
encoding_format: str | None = "float",
|
||||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
model_obj = await self._get_model(model)
|
||||
if model_obj.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model} has no provider_resource_id set")
|
||||
|
||||
# Note, at the moment Ollama does not support encoding_format, dimensions, and user parameters
|
||||
params = prepare_openai_embeddings_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
input=input,
|
||||
encoding_format=encoding_format,
|
||||
dimensions=dimensions,
|
||||
user=user,
|
||||
)
|
||||
|
||||
response = await self.openai_client.embeddings.create(**params)
|
||||
data = b64_encode_openai_embeddings_response(response.data, encoding_format)
|
||||
|
||||
usage = OpenAIEmbeddingUsage(
|
||||
prompt_tokens=response.usage.prompt_tokens,
|
||||
total_tokens=response.usage.total_tokens,
|
||||
)
|
||||
# TODO: Investigate why model_obj.identifier is used instead of response.model
|
||||
return OpenAIEmbeddingsResponse(
|
||||
data=data,
|
||||
model=model_obj.identifier,
|
||||
usage=usage,
|
||||
)
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
if not isinstance(prompt, str):
|
||||
raise ValueError("Ollama does not support non-string prompts for completion")
|
||||
|
||||
model_obj = await self._get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
suffix=suffix,
|
||||
)
|
||||
return await self.openai_client.completions.create(**params) # type: ignore
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -599,25 +508,7 @@ class OllamaInferenceAdapter(
|
|||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
response = await self.openai_client.chat.completions.create(**params)
|
||||
return await self._adjust_ollama_chat_completion_response_ids(response)
|
||||
|
||||
async def _adjust_ollama_chat_completion_response_ids(
|
||||
self,
|
||||
response: OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk],
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
id = f"chatcmpl-{uuid.uuid4()}"
|
||||
if isinstance(response, AsyncIterator):
|
||||
|
||||
async def stream_with_chunk_ids() -> AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
async for chunk in response:
|
||||
chunk.id = id
|
||||
yield chunk
|
||||
|
||||
return stream_with_chunk_ids()
|
||||
else:
|
||||
response.id = id
|
||||
return response
|
||||
return await OpenAIMixin.openai_chat_completion(self, **params)
|
||||
|
||||
|
||||
async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]:
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
from collections.abc import AsyncGenerator
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -33,6 +34,7 @@ from llama_stack.apis.inference import (
|
|||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.sku_list import all_registered_models
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
@ -41,16 +43,15 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_hf_repo_model_entry,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_model_input_info,
|
||||
completion_request_to_prompt_model_input_info,
|
||||
|
@ -73,26 +74,49 @@ def build_hf_repo_model_entries():
|
|||
|
||||
|
||||
class _HfAdapter(
|
||||
OpenAIMixin,
|
||||
Inference,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
client: AsyncInferenceClient
|
||||
url: str
|
||||
api_key: SecretStr
|
||||
|
||||
hf_client: AsyncInferenceClient
|
||||
max_tokens: int
|
||||
model_id: str
|
||||
|
||||
overwrite_completion_id = True # TGI always returns id=""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.huggingface_repo_to_llama_model_id = {
|
||||
model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo
|
||||
}
|
||||
|
||||
def get_api_key(self):
|
||||
return self.api_key.get_secret_value()
|
||||
|
||||
def get_base_url(self):
|
||||
return self.url
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
models = []
|
||||
async for model in self.client.models.list():
|
||||
models.append(
|
||||
Model(
|
||||
identifier=model.id,
|
||||
provider_resource_id=model.id,
|
||||
provider_id=self.__provider_id__,
|
||||
metadata={},
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
model = await self.register_helper.register_model(model)
|
||||
if model.provider_resource_id != self.model_id:
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI."
|
||||
|
@ -176,7 +200,7 @@ class _HfAdapter(
|
|||
params = await self._get_params_for_completion(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.text_generation(**params)
|
||||
s = await self.hf_client.text_generation(**params)
|
||||
async for chunk in s:
|
||||
token_result = chunk.token
|
||||
finish_reason = None
|
||||
|
@ -194,7 +218,7 @@ class _HfAdapter(
|
|||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params_for_completion(request)
|
||||
r = await self.client.text_generation(**params)
|
||||
r = await self.hf_client.text_generation(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r.details.finish_reason,
|
||||
|
@ -241,7 +265,7 @@ class _HfAdapter(
|
|||
|
||||
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.text_generation(**params)
|
||||
r = await self.hf_client.text_generation(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r.details.finish_reason,
|
||||
|
@ -256,7 +280,7 @@ class _HfAdapter(
|
|||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.text_generation(**params)
|
||||
s = await self.hf_client.text_generation(**params)
|
||||
async for chunk in s:
|
||||
token_result = chunk.token
|
||||
|
||||
|
@ -308,18 +332,21 @@ class TGIAdapter(_HfAdapter):
|
|||
if not config.url:
|
||||
raise ValueError("You must provide a URL in run.yaml (or via the TGI_URL environment variable) to use TGI.")
|
||||
log.info(f"Initializing TGI client with url={config.url}")
|
||||
self.client = AsyncInferenceClient(model=config.url, provider="hf-inference")
|
||||
endpoint_info = await self.client.get_endpoint_info()
|
||||
self.hf_client = AsyncInferenceClient(model=config.url, provider="hf-inference")
|
||||
endpoint_info = await self.hf_client.get_endpoint_info()
|
||||
self.max_tokens = endpoint_info["max_total_tokens"]
|
||||
self.model_id = endpoint_info["model_id"]
|
||||
self.url = f"{config.url.rstrip('/')}/v1"
|
||||
self.api_key = SecretStr("NO_KEY")
|
||||
|
||||
|
||||
class InferenceAPIAdapter(_HfAdapter):
|
||||
async def initialize(self, config: InferenceAPIImplConfig) -> None:
|
||||
self.client = AsyncInferenceClient(model=config.huggingface_repo, token=config.api_token.get_secret_value())
|
||||
endpoint_info = await self.client.get_endpoint_info()
|
||||
self.hf_client = AsyncInferenceClient(model=config.huggingface_repo, token=config.api_token.get_secret_value())
|
||||
endpoint_info = await self.hf_client.get_endpoint_info()
|
||||
self.max_tokens = endpoint_info["max_total_tokens"]
|
||||
self.model_id = endpoint_info["model_id"]
|
||||
# TODO: how do we set url for this?
|
||||
|
||||
|
||||
class InferenceEndpointAdapter(_HfAdapter):
|
||||
|
@ -331,6 +358,7 @@ class InferenceEndpointAdapter(_HfAdapter):
|
|||
endpoint.wait(timeout=60)
|
||||
|
||||
# Initialize the adapter
|
||||
self.client = endpoint.async_client
|
||||
self.hf_client = endpoint.async_client
|
||||
self.model_id = endpoint.repository
|
||||
self.max_tokens = int(endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"])
|
||||
# TODO: how do we set url for this?
|
||||
|
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ProviderModelEntry,
|
||||
|
@ -21,57 +20,84 @@ SAFETY_MODELS_ENTRIES = [
|
|||
CoreModelId.llama_guard_3_11b_vision.value,
|
||||
),
|
||||
]
|
||||
MODEL_ENTRIES = [
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
ProviderModelEntry(
|
||||
provider_model_id="togethercomputer/m2-bert-80M-8k-retrieval",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
ProviderModelEntry(
|
||||
|
||||
# source: https://docs.together.ai/docs/serverless-models#embedding-models
|
||||
EMBEDDING_MODEL_ENTRIES = {
|
||||
"togethercomputer/m2-bert-80M-32k-retrieval": ProviderModelEntry(
|
||||
provider_model_id="togethercomputer/m2-bert-80M-32k-retrieval",
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 32768,
|
||||
},
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
"BAAI/bge-large-en-v1.5": ProviderModelEntry(
|
||||
provider_model_id="BAAI/bge-large-en-v1.5",
|
||||
metadata={
|
||||
"embedding_dimension": 1024,
|
||||
"context_length": 512,
|
||||
},
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
"BAAI/bge-base-en-v1.5": ProviderModelEntry(
|
||||
provider_model_id="BAAI/bge-base-en-v1.5",
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 512,
|
||||
},
|
||||
),
|
||||
] + SAFETY_MODELS_ENTRIES
|
||||
"Alibaba-NLP/gte-modernbert-base": ProviderModelEntry(
|
||||
provider_model_id="Alibaba-NLP/gte-modernbert-base",
|
||||
metadata={
|
||||
"embedding_dimension": 768,
|
||||
"context_length": 8192,
|
||||
},
|
||||
),
|
||||
"intfloat/multilingual-e5-large-instruct": ProviderModelEntry(
|
||||
provider_model_id="intfloat/multilingual-e5-large-instruct",
|
||||
metadata={
|
||||
"embedding_dimension": 1024,
|
||||
"context_length": 512,
|
||||
},
|
||||
),
|
||||
}
|
||||
MODEL_ENTRIES = (
|
||||
[
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
||||
CoreModelId.llama4_scout_17b_16e_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
|
||||
CoreModelId.llama4_maverick_17b_128e_instruct.value,
|
||||
),
|
||||
]
|
||||
+ SAFETY_MODELS_ENTRIES
|
||||
+ list(EMBEDDING_MODEL_ENTRIES.values())
|
||||
)
|
||||
|
|
|
@ -4,11 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
from collections.abc import AsyncGenerator
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
from openai import NOT_GIVEN, AsyncOpenAI
|
||||
from together import AsyncTogether
|
||||
from together.constants import BASE_URL
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -23,12 +23,7 @@ from llama_stack.apis.inference import (
|
|||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAICompletion,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
|
@ -38,18 +33,20 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
|
@ -59,15 +56,22 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
)
|
||||
|
||||
from .config import TogetherImplConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
from .models import EMBEDDING_MODEL_ENTRIES, MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::together")
|
||||
|
||||
|
||||
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
||||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
|
||||
self.config = config
|
||||
self._model_cache: dict[str, Model] = {}
|
||||
|
||||
def get_api_key(self):
|
||||
return self.config.api_key.get_secret_value()
|
||||
|
||||
def get_base_url(self):
|
||||
return BASE_URL
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
@ -255,6 +259,37 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
embeddings = [item.embedding for item in r.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
self._model_cache = {}
|
||||
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
|
||||
for m in await self._get_client().models.list():
|
||||
if m.type == "embedding":
|
||||
if m.id not in EMBEDDING_MODEL_ENTRIES:
|
||||
logger.warning(f"Unknown embedding dimension for model {m.id}, skipping.")
|
||||
continue
|
||||
self._model_cache[m.id] = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=EMBEDDING_MODEL_ENTRIES[m.id].provider_model_id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.embedding,
|
||||
metadata=EMBEDDING_MODEL_ENTRIES[m.id].metadata,
|
||||
)
|
||||
else:
|
||||
self._model_cache[m.id] = Model(
|
||||
provider_id=self.__provider_id__,
|
||||
provider_resource_id=m.id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
|
||||
return self._model_cache.values()
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return True
|
||||
|
||||
async def check_model_availability(self, model):
|
||||
return model in self._model_cache
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -263,125 +298,39 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
dimensions: int | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
"""
|
||||
Together's OpenAI-compatible embeddings endpoint is not compatible with
|
||||
the standard OpenAI embeddings endpoint.
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
The endpoint -
|
||||
- does not return usage information
|
||||
- does not support user param, returns 400 Unrecognized request arguments supplied: user
|
||||
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
|
||||
- does not support encoding_format param, always returns floats, never base64
|
||||
"""
|
||||
# Together support ticket #13332 -> will not fix
|
||||
if user is not None:
|
||||
raise ValueError("Together's embeddings endpoint does not support user param.")
|
||||
# Together support ticket #13333 -> escalated
|
||||
if dimensions is not None:
|
||||
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
|
||||
# Together support ticket #13331 -> will not fix, compute client side
|
||||
if encoding_format not in (None, NOT_GIVEN, "float"):
|
||||
raise ValueError("Together's embeddings endpoint only supports encoding_format='float'.")
|
||||
|
||||
response = await self.client.embeddings.create(
|
||||
model=await self._get_provider_model_id(model),
|
||||
input=input,
|
||||
)
|
||||
return await self._get_openai_client().completions.create(**params) # type: ignore
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[OpenAIMessageParam],
|
||||
frequency_penalty: float | None = None,
|
||||
function_call: str | dict[str, Any] | None = None,
|
||||
functions: list[dict[str, Any]] | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_completion_tokens: int | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
parallel_tool_calls: bool | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
response_format: OpenAIResponseFormatParam | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
tool_choice: str | dict[str, Any] | None = None,
|
||||
tools: list[dict[str, Any]] | None = None,
|
||||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
if params.get("stream", False):
|
||||
return self._stream_openai_chat_completion(params)
|
||||
return await self._get_openai_client().chat.completions.create(**params) # type: ignore
|
||||
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
|
||||
|
||||
async def _stream_openai_chat_completion(self, params: dict) -> AsyncGenerator:
|
||||
# together.ai sometimes adds usage data to the stream, even if include_usage is False
|
||||
# This causes an unexpected final chunk with empty choices array to be sent
|
||||
# to clients that may not handle it gracefully.
|
||||
include_usage = False
|
||||
if params.get("stream_options", None):
|
||||
include_usage = params["stream_options"].get("include_usage", False)
|
||||
stream = await self._get_openai_client().chat.completions.create(**params)
|
||||
# Together support ticket #13330 -> escalated
|
||||
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
|
||||
if not hasattr(response, "usage") or response.usage is None:
|
||||
logger.warning(
|
||||
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
|
||||
)
|
||||
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
||||
|
||||
seen_finish_reason = False
|
||||
async for chunk in stream:
|
||||
# Final usage chunk with no choices that the user didn't request, so discard
|
||||
if not include_usage and seen_finish_reason and len(chunk.choices) == 0:
|
||||
break
|
||||
yield chunk
|
||||
for choice in chunk.choices:
|
||||
if choice.finish_reason:
|
||||
seen_finish_reason = True
|
||||
break
|
||||
return response
|
||||
|
|
|
@ -4,9 +4,15 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
|
||||
class VLLMProviderDataValidator(BaseModel):
|
||||
vllm_api_token: str | None = None
|
||||
|
||||
|
||||
async def get_adapter_impl(config: VLLMInferenceAdapterConfig, _deps):
|
||||
from .vllm import VLLMInferenceAdapter
|
||||
|
||||
|
|
|
@ -4,8 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
from collections.abc import AsyncGenerator
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import httpx
|
||||
from openai import APIConnectionError, AsyncOpenAI
|
||||
|
@ -55,6 +56,7 @@ from llama_stack.providers.datatypes import (
|
|||
HealthStatus,
|
||||
ModelsProtocolPrivate,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ModelRegistryHelper,
|
||||
build_hf_repo_model_entry,
|
||||
|
@ -62,6 +64,7 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
UnparseableToolCall,
|
||||
convert_message_to_openai_dict,
|
||||
convert_openai_chat_completion_stream,
|
||||
convert_tool_call,
|
||||
get_sampling_options,
|
||||
process_chat_completion_stream_response,
|
||||
|
@ -281,15 +284,31 @@ async def _process_vllm_chat_completion_stream_response(
|
|||
yield c
|
||||
|
||||
|
||||
class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
||||
class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsProtocolPrivate):
|
||||
# automatically set by the resolver when instantiating the provider
|
||||
__provider_id__: str
|
||||
model_store: ModelStore | None = None
|
||||
|
||||
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
||||
LiteLLMOpenAIMixin.__init__(
|
||||
self,
|
||||
build_hf_repo_model_entries(),
|
||||
litellm_provider_name="vllm",
|
||||
api_key_from_config=config.api_token,
|
||||
provider_data_api_key_field="vllm_api_token",
|
||||
openai_compat_api_base=config.url,
|
||||
)
|
||||
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
|
||||
self.config = config
|
||||
|
||||
get_api_key = LiteLLMOpenAIMixin.get_api_key
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
"""Get the base URL from config."""
|
||||
if not self.config.url:
|
||||
raise ValueError("No base URL configured")
|
||||
return self.config.url
|
||||
|
||||
async def initialize(self) -> None:
|
||||
if not self.config.url:
|
||||
raise ValueError(
|
||||
|
@ -297,6 +316,7 @@ class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
|||
)
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
# Strictly respecting the refresh_models directive
|
||||
return self.config.refresh_models
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
|
@ -325,13 +345,19 @@ class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
|||
Performs a health check by verifying connectivity to the remote vLLM server.
|
||||
This method is used by the Provider API to verify
|
||||
that the service is running correctly.
|
||||
Uses the unauthenticated /health endpoint.
|
||||
Returns:
|
||||
|
||||
HealthResponse: A dictionary containing the health status.
|
||||
"""
|
||||
try:
|
||||
_ = [m async for m in self.client.models.list()] # Ensure the client is initialized
|
||||
return HealthResponse(status=HealthStatus.OK)
|
||||
base_url = self.get_base_url()
|
||||
health_url = urljoin(base_url, "health")
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get(health_url)
|
||||
response.raise_for_status()
|
||||
return HealthResponse(status=HealthStatus.OK)
|
||||
except Exception as e:
|
||||
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
|
||||
|
||||
|
@ -340,16 +366,10 @@ class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
|||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
def get_api_key(self):
|
||||
return self.config.api_token
|
||||
|
||||
def get_base_url(self):
|
||||
return self.config.url
|
||||
|
||||
def get_extra_client_params(self):
|
||||
return {"http_client": httpx.AsyncClient(verify=self.config.tls_verify)}
|
||||
|
||||
async def completion(
|
||||
async def completion( # type: ignore[override] # Return type more specific than base class which is allows for both streaming and non-streaming responses.
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
|
@ -411,13 +431,14 @@ class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
|||
tool_config=tool_config,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, self.client)
|
||||
return self._stream_chat_completion_with_client(request, self.client)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request, self.client)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: AsyncOpenAI
|
||||
) -> ChatCompletionResponse:
|
||||
assert self.client is not None
|
||||
params = await self._get_params(request)
|
||||
r = await client.chat.completions.create(**params)
|
||||
choice = r.choices[0]
|
||||
|
@ -431,9 +452,24 @@ class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
|||
)
|
||||
return result
|
||||
|
||||
async def _stream_chat_completion(
|
||||
async def _stream_chat_completion(self, response: Any) -> AsyncIterator[ChatCompletionResponseStreamChunk]:
|
||||
# This method is called from LiteLLMOpenAIMixin.chat_completion
|
||||
# The response parameter contains the litellm response
|
||||
# We need to convert it to our format
|
||||
async def _stream_generator():
|
||||
async for chunk in response:
|
||||
yield chunk
|
||||
|
||||
async for chunk in convert_openai_chat_completion_stream(
|
||||
_stream_generator(), enable_incremental_tool_calls=True
|
||||
):
|
||||
yield chunk
|
||||
|
||||
async def _stream_chat_completion_with_client(
|
||||
self, request: ChatCompletionRequest, client: AsyncOpenAI
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
"""Helper method for streaming with explicit client parameter."""
|
||||
assert self.client is not None
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await client.chat.completions.create(**params)
|
||||
|
@ -445,7 +481,8 @@ class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
|||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
assert self.client is not None
|
||||
if self.client is None:
|
||||
raise RuntimeError("Client is not initialized")
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.completions.create(**params)
|
||||
return process_completion_response(r)
|
||||
|
@ -453,7 +490,8 @@ class VLLMInferenceAdapter(OpenAIMixin, Inference, ModelsProtocolPrivate):
|
|||
async def _stream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
assert self.client is not None
|
||||
if self.client is None:
|
||||
raise RuntimeError("Client is not initialized")
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await self.client.completions.create(**params)
|
||||
|
|
|
@ -26,11 +26,11 @@ class WatsonXConfig(BaseModel):
|
|||
)
|
||||
api_key: SecretStr | None = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_API_KEY"),
|
||||
description="The watsonx API key, only needed of using the hosted service",
|
||||
description="The watsonx API key",
|
||||
)
|
||||
project_id: str | None = Field(
|
||||
default_factory=lambda: os.getenv("WATSONX_PROJECT_ID"),
|
||||
description="The Project ID key, only needed of using the hosted service",
|
||||
description="The Project ID key",
|
||||
)
|
||||
timeout: int = Field(
|
||||
default=60,
|
||||
|
|
|
@ -38,6 +38,7 @@ from llama_stack.apis.inference import (
|
|||
TopKSamplingStrategy,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAICompatCompletionChoice,
|
||||
|
@ -57,14 +58,29 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
from . import WatsonXConfig
|
||||
from .models import MODEL_ENTRIES
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::watsonx")
|
||||
|
||||
|
||||
# Note on structured output
|
||||
# WatsonX returns responses with a json embedded into a string.
|
||||
# Examples:
|
||||
|
||||
# ChatCompletionResponse(completion_message=CompletionMessage(content='```json\n{\n
|
||||
# "first_name": "Michael",\n "last_name": "Jordan",\n'...)
|
||||
# Not even a valid JSON, but we can still extract the JSON from the content
|
||||
|
||||
# CompletionResponse(content=' \nThe best answer is $\\boxed{\\{"name": "Michael Jordan",
|
||||
# "year_born": "1963", "year_retired": "2003"\\}}$')
|
||||
# Find the start of the boxed content
|
||||
|
||||
|
||||
class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
def __init__(self, config: WatsonXConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
||||
|
||||
print(f"Initializing watsonx InferenceAdapter({config.url})...")
|
||||
|
||||
logger.info(f"Initializing watsonx InferenceAdapter({config.url})...")
|
||||
self._config = config
|
||||
self._openai_client: AsyncOpenAI | None = None
|
||||
|
||||
self._project_id = self._config.project_id
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import hashlib
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
|
@ -49,10 +50,13 @@ def convert_id(_id: str) -> str:
|
|||
Converts any string into a UUID string based on a seed.
|
||||
|
||||
Qdrant accepts UUID strings and unsigned integers as point ID.
|
||||
We use a seed to convert each string into a UUID string deterministically.
|
||||
We use a SHA-256 hash to convert each string into a UUID string deterministically.
|
||||
This allows us to overwrite the same point with the original ID.
|
||||
"""
|
||||
return str(uuid.uuid5(uuid.NAMESPACE_DNS, _id))
|
||||
hash_input = f"qdrant_id:{_id}".encode()
|
||||
sha256_hash = hashlib.sha256(hash_input).hexdigest()
|
||||
# Use the first 32 characters to create a valid UUID
|
||||
return str(uuid.UUID(sha256_hash[:32]))
|
||||
|
||||
|
||||
class QdrantIndex(EmbeddingIndex):
|
||||
|
|
|
@ -4,11 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
import openai
|
||||
from openai import NOT_GIVEN, AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
|
@ -22,6 +22,7 @@ from llama_stack.apis.inference import (
|
|||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
|
||||
|
@ -43,6 +44,16 @@ class OpenAIMixin(ABC):
|
|||
The model_store is set in routing_tables/common.py during provider initialization.
|
||||
"""
|
||||
|
||||
# Allow subclasses to control whether to overwrite the 'id' field in OpenAI responses
|
||||
# is overwritten with a client-side generated id.
|
||||
#
|
||||
# This is useful for providers that do not return a unique id in the response.
|
||||
overwrite_completion_id: bool = False
|
||||
|
||||
# Cache of available models keyed by model ID
|
||||
# This is set in list_models() and used in check_model_availability()
|
||||
_model_cache: dict[str, Model] = {}
|
||||
|
||||
@abstractmethod
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
|
@ -110,6 +121,23 @@ class OpenAIMixin(ABC):
|
|||
raise ValueError(f"Model {model} has no provider_resource_id")
|
||||
return model_obj.provider_resource_id
|
||||
|
||||
async def _maybe_overwrite_id(self, resp: Any, stream: bool | None) -> Any:
|
||||
if not self.overwrite_completion_id:
|
||||
return resp
|
||||
|
||||
new_id = f"cltsd-{uuid.uuid4()}"
|
||||
if stream:
|
||||
|
||||
async def _gen():
|
||||
async for chunk in resp:
|
||||
chunk.id = new_id
|
||||
yield chunk
|
||||
|
||||
return _gen()
|
||||
else:
|
||||
resp.id = new_id
|
||||
return resp
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -147,7 +175,7 @@ class OpenAIMixin(ABC):
|
|||
extra_body["guided_choice"] = guided_choice
|
||||
|
||||
# TODO: fix openai_completion to return type compatible with OpenAI's API response
|
||||
return await self.client.completions.create( # type: ignore[no-any-return]
|
||||
resp = await self.client.completions.create(
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
prompt=prompt,
|
||||
|
@ -171,6 +199,8 @@ class OpenAIMixin(ABC):
|
|||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -200,8 +230,7 @@ class OpenAIMixin(ABC):
|
|||
"""
|
||||
Direct OpenAI chat completion API call.
|
||||
"""
|
||||
# Type ignore because return types are compatible
|
||||
return await self.client.chat.completions.create( # type: ignore[no-any-return]
|
||||
resp = await self.client.chat.completions.create(
|
||||
**await prepare_openai_completion_params(
|
||||
model=await self._get_provider_model_id(model),
|
||||
messages=messages,
|
||||
|
@ -229,6 +258,8 @@ class OpenAIMixin(ABC):
|
|||
)
|
||||
)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -269,22 +300,35 @@ class OpenAIMixin(ABC):
|
|||
usage=usage,
|
||||
)
|
||||
|
||||
async def list_models(self) -> list[Model] | None:
|
||||
"""
|
||||
List available models from the provider's /v1/models endpoint.
|
||||
|
||||
Also, caches the models in self._model_cache for use in check_model_availability().
|
||||
|
||||
:return: A list of Model instances representing available models.
|
||||
"""
|
||||
self._model_cache = {
|
||||
m.id: Model(
|
||||
# __provider_id__ is dynamically added by instantiate_provider in resolver.py
|
||||
provider_id=self.__provider_id__, # type: ignore[attr-defined]
|
||||
provider_resource_id=m.id,
|
||||
identifier=m.id,
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
async for m in self.client.models.list()
|
||||
}
|
||||
|
||||
return list(self._model_cache.values())
|
||||
|
||||
async def check_model_availability(self, model: str) -> bool:
|
||||
"""
|
||||
Check if a specific model is available from OpenAI.
|
||||
Check if a specific model is available from the provider's /v1/models.
|
||||
|
||||
:param model: The model identifier to check.
|
||||
:return: True if the model is available dynamically, False otherwise.
|
||||
"""
|
||||
try:
|
||||
# Direct model lookup - returns model or raises NotFoundError
|
||||
await self.client.models.retrieve(model)
|
||||
return True
|
||||
except openai.NotFoundError:
|
||||
# Model doesn't exist - this is expected for unavailable models
|
||||
pass
|
||||
except Exception as e:
|
||||
# All other errors (auth, rate limit, network, etc.)
|
||||
logger.warning(f"Failed to check model availability for {model}: {e}")
|
||||
if not self._model_cache:
|
||||
await self.list_models()
|
||||
|
||||
return False
|
||||
return model in self._model_cache
|
||||
|
|
|
@ -12,14 +12,12 @@ import uuid
|
|||
def generate_chunk_id(document_id: str, chunk_text: str, chunk_window: str | None = None) -> str:
|
||||
"""
|
||||
Generate a unique chunk ID using a hash of the document ID and chunk text.
|
||||
|
||||
Note: MD5 is used only to calculate an identifier, not for security purposes.
|
||||
Adding usedforsecurity=False for compatibility with FIPS environments.
|
||||
Then use the first 32 characters of the hash to create a UUID.
|
||||
"""
|
||||
hash_input = f"{document_id}:{chunk_text}".encode()
|
||||
if chunk_window:
|
||||
hash_input += f":{chunk_window}".encode()
|
||||
return str(uuid.UUID(hashlib.md5(hash_input, usedforsecurity=False).hexdigest()))
|
||||
return str(uuid.UUID(hashlib.sha256(hash_input).hexdigest()[:32]))
|
||||
|
||||
|
||||
def proper_case(s: str) -> str:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue