mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
llama3_1 -> llama3
This commit is contained in:
parent
75bbe787b6
commit
c736e5b576
4 changed files with 69 additions and 24 deletions
|
@ -9,7 +9,7 @@ from typing import Any, Dict, List, Optional, Protocol
|
|||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from pydantic import BaseModel
|
||||
from llama_models.llama3_1.api.datatypes import * # noqa: F403
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from .datatypes import * # noqa: F403
|
||||
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_models.llama3_1.api.datatypes import * # noqa: F403
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_toolchain.agentic_system.api import * # noqa: F403
|
||||
from llama_toolchain.dataset.api import * # noqa: F403
|
||||
from llama_toolchain.evaluations.api import * # noqa: F403
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
"info": {
|
||||
"title": "[DRAFT] Llama Stack Specification",
|
||||
"version": "0.0.1",
|
||||
"description": "This is the specification of the llama stack that provides\n a set of endpoints and their corresponding interfaces that are tailored to\n best leverage Llama Models. The specification is still in draft and subject to change.\n Generated at 2024-08-15 17:30:18.232105"
|
||||
"description": "This is the specification of the llama stack that provides\n a set of endpoints and their corresponding interfaces that are tailored to\n best leverage Llama Models. The specification is still in draft and subject to change.\n Generated at 2024-08-20 19:00:39.110138"
|
||||
},
|
||||
"servers": [
|
||||
{
|
||||
|
@ -2580,6 +2580,9 @@
|
|||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"tool_prompt_format": {
|
||||
"$ref": "#/components/schemas/ToolPromptFormat"
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
|
@ -2726,6 +2729,15 @@
|
|||
"on_violation_action"
|
||||
]
|
||||
},
|
||||
"ToolPromptFormat": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"json",
|
||||
"function_tag"
|
||||
],
|
||||
"title": "This Enum refers to the prompt format for calling zero shot tools",
|
||||
"description": "`json` --\n Refers to the json format for calling tools.\n The json format takes the form like\n {\n \"type\": \"function\",\n \"function\" : {\n \"name\": \"function_name\",\n \"description\": \"function_description\",\n \"parameters\": {...}\n }\n }\n\n`function_tag` --\n This is an example of how you could define\n your own user defined format for making tool calls.\n The function_tag format looks like this,\n <function=function_name>(parameters)</function>\n\nThe detailed prompts for each of these formats are defined in `system_prompt.py`"
|
||||
},
|
||||
"AgenticSystemCreateResponse": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
@ -4768,31 +4780,31 @@
|
|||
],
|
||||
"tags": [
|
||||
{
|
||||
"name": "MemoryBanks"
|
||||
},
|
||||
{
|
||||
"name": "Observability"
|
||||
},
|
||||
{
|
||||
"name": "Evaluations"
|
||||
},
|
||||
{
|
||||
"name": "Inference"
|
||||
"name": "RewardScoring"
|
||||
},
|
||||
{
|
||||
"name": "AgenticSystem"
|
||||
},
|
||||
{
|
||||
"name": "SyntheticDataGeneration"
|
||||
},
|
||||
{
|
||||
"name": "Inference"
|
||||
},
|
||||
{
|
||||
"name": "Datasets"
|
||||
},
|
||||
{
|
||||
"name": "Observability"
|
||||
},
|
||||
{
|
||||
"name": "PostTraining"
|
||||
},
|
||||
{
|
||||
"name": "SyntheticDataGeneration"
|
||||
"name": "MemoryBanks"
|
||||
},
|
||||
{
|
||||
"name": "RewardScoring"
|
||||
"name": "Evaluations"
|
||||
},
|
||||
{
|
||||
"name": "Attachment",
|
||||
|
@ -4938,6 +4950,10 @@
|
|||
"name": "ShieldDefinition",
|
||||
"description": "<SchemaDefinition schemaRef=\"#/components/schemas/ShieldDefinition\" />"
|
||||
},
|
||||
{
|
||||
"name": "ToolPromptFormat",
|
||||
"description": "This Enum refers to the prompt format for calling zero shot tools\n\n`json` --\n Refers to the json format for calling tools.\n The json format takes the form like\n {\n \"type\": \"function\",\n \"function\" : {\n \"name\": \"function_name\",\n \"description\": \"function_description\",\n \"parameters\": {...}\n }\n }\n\n`function_tag` --\n This is an example of how you could define\n your own user defined format for making tool calls.\n The function_tag format looks like this,\n <function=function_name>(parameters)</function>\n\nThe detailed prompts for each of these formats are defined in `system_prompt.py`\n\n<SchemaDefinition schemaRef=\"#/components/schemas/ToolPromptFormat\" />"
|
||||
},
|
||||
{
|
||||
"name": "AgenticSystemCreateResponse",
|
||||
"description": "<SchemaDefinition schemaRef=\"#/components/schemas/AgenticSystemCreateResponse\" />"
|
||||
|
@ -5302,6 +5318,7 @@
|
|||
"ToolDefinition",
|
||||
"ToolExecutionStep",
|
||||
"ToolParamDefinition",
|
||||
"ToolPromptFormat",
|
||||
"ToolResponse",
|
||||
"ToolResponseMessage",
|
||||
"TrainEvalDataset",
|
||||
|
|
|
@ -51,6 +51,8 @@ components:
|
|||
- $ref: '#/components/schemas/Fp8QuantizationConfig'
|
||||
sampling_params:
|
||||
$ref: '#/components/schemas/SamplingParams'
|
||||
tool_prompt_format:
|
||||
$ref: '#/components/schemas/ToolPromptFormat'
|
||||
required:
|
||||
- instructions
|
||||
type: object
|
||||
|
@ -1607,6 +1609,20 @@ components:
|
|||
required:
|
||||
- param_type
|
||||
type: object
|
||||
ToolPromptFormat:
|
||||
description: "`json` --\n Refers to the json format for calling tools.\n\
|
||||
\ The json format takes the form like\n {\n \"type\": \"function\"\
|
||||
,\n \"function\" : {\n \"name\": \"function_name\",\n \
|
||||
\ \"description\": \"function_description\",\n \"parameters\"\
|
||||
: {...}\n }\n }\n\n`function_tag` --\n This is an example of\
|
||||
\ how you could define\n your own user defined format for making tool calls.\n\
|
||||
\ The function_tag format looks like this,\n <function=function_name>(parameters)</function>\n\
|
||||
\nThe detailed prompts for each of these formats are defined in `system_prompt.py`"
|
||||
enum:
|
||||
- json
|
||||
- function_tag
|
||||
title: This Enum refers to the prompt format for calling zero shot tools
|
||||
type: string
|
||||
ToolResponse:
|
||||
additionalProperties: false
|
||||
properties:
|
||||
|
@ -1851,7 +1867,7 @@ info:
|
|||
description: "This is the specification of the llama stack that provides\n \
|
||||
\ a set of endpoints and their corresponding interfaces that are tailored\
|
||||
\ to\n best leverage Llama Models. The specification is still in\
|
||||
\ draft and subject to change.\n Generated at 2024-08-15 17:30:18.232105"
|
||||
\ draft and subject to change.\n Generated at 2024-08-20 19:00:39.110138"
|
||||
title: '[DRAFT] Llama Stack Specification'
|
||||
version: 0.0.1
|
||||
jsonSchemaDialect: https://json-schema.org/draft/2020-12/schema
|
||||
|
@ -2854,15 +2870,15 @@ security:
|
|||
servers:
|
||||
- url: http://any-hosted-llama-stack.com
|
||||
tags:
|
||||
- name: MemoryBanks
|
||||
- name: Observability
|
||||
- name: Evaluations
|
||||
- name: Inference
|
||||
- name: AgenticSystem
|
||||
- name: Datasets
|
||||
- name: PostTraining
|
||||
- name: SyntheticDataGeneration
|
||||
- name: RewardScoring
|
||||
- name: AgenticSystem
|
||||
- name: SyntheticDataGeneration
|
||||
- name: Inference
|
||||
- name: Datasets
|
||||
- name: Observability
|
||||
- name: PostTraining
|
||||
- name: MemoryBanks
|
||||
- name: Evaluations
|
||||
- description: <SchemaDefinition schemaRef="#/components/schemas/Attachment" />
|
||||
name: Attachment
|
||||
- description: <SchemaDefinition schemaRef="#/components/schemas/BatchChatCompletionRequest"
|
||||
|
@ -2967,6 +2983,17 @@ tags:
|
|||
- description: <SchemaDefinition schemaRef="#/components/schemas/ShieldDefinition"
|
||||
/>
|
||||
name: ShieldDefinition
|
||||
- description: "This Enum refers to the prompt format for calling zero shot tools\n\
|
||||
\n`json` --\n Refers to the json format for calling tools.\n The json format\
|
||||
\ takes the form like\n {\n \"type\": \"function\",\n \"function\"\
|
||||
\ : {\n \"name\": \"function_name\",\n \"description\":\
|
||||
\ \"function_description\",\n \"parameters\": {...}\n }\n \
|
||||
\ }\n\n`function_tag` --\n This is an example of how you could define\n \
|
||||
\ your own user defined format for making tool calls.\n The function_tag format\
|
||||
\ looks like this,\n <function=function_name>(parameters)</function>\n\nThe\
|
||||
\ detailed prompts for each of these formats are defined in `system_prompt.py`\n\
|
||||
\n<SchemaDefinition schemaRef=\"#/components/schemas/ToolPromptFormat\" />"
|
||||
name: ToolPromptFormat
|
||||
- description: <SchemaDefinition schemaRef="#/components/schemas/AgenticSystemCreateResponse"
|
||||
/>
|
||||
name: AgenticSystemCreateResponse
|
||||
|
@ -3298,6 +3325,7 @@ x-tagGroups:
|
|||
- ToolDefinition
|
||||
- ToolExecutionStep
|
||||
- ToolParamDefinition
|
||||
- ToolPromptFormat
|
||||
- ToolResponse
|
||||
- ToolResponseMessage
|
||||
- TrainEvalDataset
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue