migrate memory banks to Resource and new registration

This commit is contained in:
Dinesh Yeduguru 2024-11-08 15:45:26 -08:00
parent b4416b72fd
commit c82f13bf9e
16 changed files with 178 additions and 104 deletions

View file

@ -13,7 +13,6 @@ from pydantic import BaseModel, Field
from llama_stack.apis.datasets import DatasetDef
from llama_stack.apis.eval_tasks import EvalTaskDef
from llama_stack.apis.memory_banks import MemoryBankDef
from llama_stack.apis.models import Model
from llama_stack.apis.scoring_functions import ScoringFnDef
from llama_stack.apis.shields import Shield
@ -51,9 +50,9 @@ class ShieldsProtocolPrivate(Protocol):
class MemoryBanksProtocolPrivate(Protocol):
async def list_memory_banks(self) -> List[MemoryBankDef]: ...
async def list_memory_banks(self) -> List[MemoryBank]: ...
async def register_memory_bank(self, memory_bank: MemoryBankDef) -> None: ...
async def register_memory_bank(self, memory_bank: MemoryBank) -> None: ...
class DatasetsProtocolPrivate(Protocol):

View file

@ -641,7 +641,7 @@ class ChatAgent(ShieldRunnerMixin):
if session_info.memory_bank_id is None:
bank_id = f"memory_bank_{session_id}"
memory_bank = VectorMemoryBankDef(
memory_bank = VectorMemoryBank(
identifier=bank_id,
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,

View file

@ -83,7 +83,7 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
stored_banks = await self.kvstore.range(start_key, end_key)
for bank_data in stored_banks:
bank = VectorMemoryBankDef.model_validate_json(bank_data)
bank = VectorMemoryBank.model_validate_json(bank_data)
index = BankWithIndex(
bank=bank, index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION)
)
@ -95,10 +95,10 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
async def register_memory_bank(
self,
memory_bank: MemoryBankDef,
memory_bank: MemoryBank,
) -> None:
assert (
memory_bank.type == MemoryBankType.vector.value
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.type}"
# Store in kvstore
@ -114,7 +114,7 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
)
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBankDef]:
async def list_memory_banks(self) -> List[MemoryBank]:
return [i.bank for i in self.cache.values()]
async def insert_documents(

View file

@ -12,6 +12,7 @@ from numpy.typing import NDArray
from qdrant_client import AsyncQdrantClient, models
from qdrant_client.models import PointStruct
from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.apis.memory import * # noqa: F403
@ -112,11 +113,11 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
async def register_memory_bank(
self,
memory_bank: MemoryBankDef,
memory_bank: MemoryBank,
) -> None:
assert (
memory_bank.type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.type}"
memory_bank.memory_bank_type == MemoryBankType.vector
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
index = BankWithIndex(
bank=memory_bank,
@ -125,7 +126,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBankDef]:
async def list_memory_banks(self) -> List[MemoryBank]:
# Qdrant doesn't have collection level metadata to store the bank properties
# So we only return from the cache value
return [i.bank for i in self.cache.values()]

View file

@ -114,11 +114,11 @@ class WeaviateMemoryAdapter(
async def register_memory_bank(
self,
memory_bank: MemoryBankDef,
memory_bank: MemoryBank,
) -> None:
assert (
memory_bank.type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.type}"
memory_bank.memory_bank_type == MemoryBankType.vector
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
client = self._get_client()
@ -141,7 +141,7 @@ class WeaviateMemoryAdapter(
)
self.cache[memory_bank.identifier] = index
async def list_memory_banks(self) -> List[MemoryBankDef]:
async def list_memory_banks(self) -> List[MemoryBank]:
# TODO: right now the Llama Stack is the source of truth for these banks. That is
# not ideal. It should be Weaviate which is the source of truth. Unfortunately,
# list() happens at Stack startup when the Weaviate client (credentials) is not
@ -157,8 +157,8 @@ class WeaviateMemoryAdapter(
raise ValueError(f"Bank {bank_id} not found")
client = self._get_client()
if not client.collections.exists(bank_id):
raise ValueError(f"Collection with name `{bank_id}` not found")
if not client.collections.exists(bank.identifier):
raise ValueError(f"Collection with name `{bank.identifier}` not found")
index = BankWithIndex(
bank=bank,

View file

@ -43,14 +43,15 @@ def sample_documents():
async def register_memory_bank(banks_impl: MemoryBanks):
bank = VectorMemoryBankDef(
identifier="test_bank",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
await banks_impl.register_memory_bank(bank)
await banks_impl.register_memory_bank(
VectorRegistration(
memory_bank_id="test_bank",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
)
)
class TestMemory:
@ -68,8 +69,8 @@ class TestMemory:
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
_, banks_impl = memory_stack
bank = VectorMemoryBankDef(
identifier="test_bank_no_provider",
bank = VectorRegistration(
memory_bank_id="test_bank_no_provider",
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,

View file

@ -148,7 +148,7 @@ class EmbeddingIndex(ABC):
@dataclass
class BankWithIndex:
bank: MemoryBankDef
bank: VectorMemoryBank
index: EmbeddingIndex
async def insert_documents(