feat: introduce API leveling, post_training, eval to v1alpha (#3449)

# What does this PR do?

Rather than have a single `LLAMA_STACK_VERSION`, we need to have a
`_V1`, `_V1ALPHA`, and `_V1BETA` constant.

This also necessitated addition of `level` to the `WebMethod` so that
routing can be handeled properly.


For backwards compat, the `v1` routes are being kept around and marked
as `deprecated`. When used, the server will log a deprecation warning.

Deprecation log:

<img width="1224" height="134" alt="Screenshot 2025-09-25 at 2 43 36 PM"
src="https://github.com/user-attachments/assets/0cc7c245-dafc-48f0-be99-269fb9a686f9"
/>

move:
1. post_training to `v1alpha` as it is under heavy development and not
near its final state
2. eval: job scheduling is not implemented. Relies heavily on the
datasetio API which is under development missing implementations of
specific routes indicating the structure of those routes might change.
Additionally eval depends on the `inference` API which is going to be
deprecated, eval will likely need a major API surface change to conform
to using completions properly

implements leveling in #3317 

note: integration tests will fail until the SDK is regenerated with
v1alpha/inference as opposed to v1/inference

## Test Plan

existing tests should pass with newly generated schema. Conformance will
also pass as these routes are not the ones we currently test for
stability

Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
Charlie Doern 2025-09-26 10:18:07 -04:00 committed by GitHub
parent 65e01b5684
commit c88c4ff2c6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
35 changed files with 1507 additions and 260 deletions

View file

@ -21,6 +21,7 @@ from llama_stack.apis.common.content_types import ContentDelta, InterleavedConte
from llama_stack.apis.common.responses import Order
from llama_stack.apis.models import Model
from llama_stack.apis.telemetry import MetricResponseMixin
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.models.llama.datatypes import (
BuiltinTool,
StopReason,
@ -1026,7 +1027,7 @@ class InferenceProvider(Protocol):
model_store: ModelStore | None = None
@webmethod(route="/inference/completion", method="POST")
@webmethod(route="/inference/completion", method="POST", level=LLAMA_STACK_API_V1)
async def completion(
self,
model_id: str,
@ -1049,7 +1050,7 @@ class InferenceProvider(Protocol):
"""
...
@webmethod(route="/inference/batch-completion", method="POST", experimental=True)
@webmethod(route="/inference/batch-completion", method="POST", experimental=True, level=LLAMA_STACK_API_V1)
async def batch_completion(
self,
model_id: str,
@ -1070,7 +1071,7 @@ class InferenceProvider(Protocol):
raise NotImplementedError("Batch completion is not implemented")
return # this is so mypy's safe-super rule will consider the method concrete
@webmethod(route="/inference/chat-completion", method="POST")
@webmethod(route="/inference/chat-completion", method="POST", level=LLAMA_STACK_API_V1)
async def chat_completion(
self,
model_id: str,
@ -1110,7 +1111,7 @@ class InferenceProvider(Protocol):
"""
...
@webmethod(route="/inference/batch-chat-completion", method="POST", experimental=True)
@webmethod(route="/inference/batch-chat-completion", method="POST", experimental=True, level=LLAMA_STACK_API_V1)
async def batch_chat_completion(
self,
model_id: str,
@ -1135,7 +1136,7 @@ class InferenceProvider(Protocol):
raise NotImplementedError("Batch chat completion is not implemented")
return # this is so mypy's safe-super rule will consider the method concrete
@webmethod(route="/inference/embeddings", method="POST")
@webmethod(route="/inference/embeddings", method="POST", level=LLAMA_STACK_API_V1)
async def embeddings(
self,
model_id: str,
@ -1155,7 +1156,7 @@ class InferenceProvider(Protocol):
"""
...
@webmethod(route="/inference/rerank", method="POST", experimental=True)
@webmethod(route="/inference/rerank", method="POST", experimental=True, level=LLAMA_STACK_API_V1)
async def rerank(
self,
model: str,
@ -1174,7 +1175,7 @@ class InferenceProvider(Protocol):
raise NotImplementedError("Reranking is not implemented")
return # this is so mypy's safe-super rule will consider the method concrete
@webmethod(route="/openai/v1/completions", method="POST")
@webmethod(route="/openai/v1/completions", method="POST", level=LLAMA_STACK_API_V1)
async def openai_completion(
self,
# Standard OpenAI completion parameters
@ -1225,7 +1226,7 @@ class InferenceProvider(Protocol):
"""
...
@webmethod(route="/openai/v1/chat/completions", method="POST")
@webmethod(route="/openai/v1/chat/completions", method="POST", level=LLAMA_STACK_API_V1)
async def openai_chat_completion(
self,
model: str,
@ -1281,7 +1282,7 @@ class InferenceProvider(Protocol):
"""
...
@webmethod(route="/openai/v1/embeddings", method="POST")
@webmethod(route="/openai/v1/embeddings", method="POST", level=LLAMA_STACK_API_V1)
async def openai_embeddings(
self,
model: str,
@ -1310,7 +1311,7 @@ class Inference(InferenceProvider):
- Embedding models: these models generate embeddings to be used for semantic search.
"""
@webmethod(route="/openai/v1/chat/completions", method="GET")
@webmethod(route="/openai/v1/chat/completions", method="GET", level=LLAMA_STACK_API_V1)
async def list_chat_completions(
self,
after: str | None = None,
@ -1328,7 +1329,7 @@ class Inference(InferenceProvider):
"""
raise NotImplementedError("List chat completions is not implemented")
@webmethod(route="/openai/v1/chat/completions/{completion_id}", method="GET")
@webmethod(route="/openai/v1/chat/completions/{completion_id}", method="GET", level=LLAMA_STACK_API_V1)
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
"""Describe a chat completion by its ID.