mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
feat: introduce API leveling, post_training, eval to v1alpha (#3449)
# What does this PR do? Rather than have a single `LLAMA_STACK_VERSION`, we need to have a `_V1`, `_V1ALPHA`, and `_V1BETA` constant. This also necessitated addition of `level` to the `WebMethod` so that routing can be handeled properly. For backwards compat, the `v1` routes are being kept around and marked as `deprecated`. When used, the server will log a deprecation warning. Deprecation log: <img width="1224" height="134" alt="Screenshot 2025-09-25 at 2 43 36 PM" src="https://github.com/user-attachments/assets/0cc7c245-dafc-48f0-be99-269fb9a686f9" /> move: 1. post_training to `v1alpha` as it is under heavy development and not near its final state 2. eval: job scheduling is not implemented. Relies heavily on the datasetio API which is under development missing implementations of specific routes indicating the structure of those routes might change. Additionally eval depends on the `inference` API which is going to be deprecated, eval will likely need a major API surface change to conform to using completions properly implements leveling in #3317 note: integration tests will fail until the SDK is regenerated with v1alpha/inference as opposed to v1/inference ## Test Plan existing tests should pass with newly generated schema. Conformance will also pass as these routes are not the ones we currently test for stability Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
65e01b5684
commit
c88c4ff2c6
35 changed files with 1507 additions and 260 deletions
|
@ -21,6 +21,7 @@ from llama_stack.apis.common.content_types import ContentDelta, InterleavedConte
|
|||
from llama_stack.apis.common.responses import Order
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.telemetry import MetricResponseMixin
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
StopReason,
|
||||
|
@ -1026,7 +1027,7 @@ class InferenceProvider(Protocol):
|
|||
|
||||
model_store: ModelStore | None = None
|
||||
|
||||
@webmethod(route="/inference/completion", method="POST")
|
||||
@webmethod(route="/inference/completion", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -1049,7 +1050,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/inference/batch-completion", method="POST", experimental=True)
|
||||
@webmethod(route="/inference/batch-completion", method="POST", experimental=True, level=LLAMA_STACK_API_V1)
|
||||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -1070,7 +1071,7 @@ class InferenceProvider(Protocol):
|
|||
raise NotImplementedError("Batch completion is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/inference/chat-completion", method="POST")
|
||||
@webmethod(route="/inference/chat-completion", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -1110,7 +1111,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/inference/batch-chat-completion", method="POST", experimental=True)
|
||||
@webmethod(route="/inference/batch-chat-completion", method="POST", experimental=True, level=LLAMA_STACK_API_V1)
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -1135,7 +1136,7 @@ class InferenceProvider(Protocol):
|
|||
raise NotImplementedError("Batch chat completion is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/inference/embeddings", method="POST")
|
||||
@webmethod(route="/inference/embeddings", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -1155,7 +1156,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/inference/rerank", method="POST", experimental=True)
|
||||
@webmethod(route="/inference/rerank", method="POST", experimental=True, level=LLAMA_STACK_API_V1)
|
||||
async def rerank(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -1174,7 +1175,7 @@ class InferenceProvider(Protocol):
|
|||
raise NotImplementedError("Reranking is not implemented")
|
||||
return # this is so mypy's safe-super rule will consider the method concrete
|
||||
|
||||
@webmethod(route="/openai/v1/completions", method="POST")
|
||||
@webmethod(route="/openai/v1/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
|
@ -1225,7 +1226,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions", method="POST")
|
||||
@webmethod(route="/openai/v1/chat/completions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -1281,7 +1282,7 @@ class InferenceProvider(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/openai/v1/embeddings", method="POST")
|
||||
@webmethod(route="/openai/v1/embeddings", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -1310,7 +1311,7 @@ class Inference(InferenceProvider):
|
|||
- Embedding models: these models generate embeddings to be used for semantic search.
|
||||
"""
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions", method="GET")
|
||||
@webmethod(route="/openai/v1/chat/completions", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_chat_completions(
|
||||
self,
|
||||
after: str | None = None,
|
||||
|
@ -1328,7 +1329,7 @@ class Inference(InferenceProvider):
|
|||
"""
|
||||
raise NotImplementedError("List chat completions is not implemented")
|
||||
|
||||
@webmethod(route="/openai/v1/chat/completions/{completion_id}", method="GET")
|
||||
@webmethod(route="/openai/v1/chat/completions/{completion_id}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def get_chat_completion(self, completion_id: str) -> OpenAICompletionWithInputMessages:
|
||||
"""Describe a chat completion by its ID.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue