mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-27 11:12:01 +00:00
chore: Enabling Milvus for VectorIO CI
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
709eb7da33
commit
c8d41d45ec
115 changed files with 2919 additions and 184 deletions
52
docs/source/providers/vector_io/inline_chromadb.md
Normal file
52
docs/source/providers/vector_io/inline_chromadb.md
Normal file
|
|
@ -0,0 +1,52 @@
|
|||
# inline::chromadb
|
||||
|
||||
## Description
|
||||
|
||||
|
||||
[Chroma](https://www.trychroma.com/) is an inline and remote vector
|
||||
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
||||
## Features
|
||||
Chroma supports:
|
||||
- Store embeddings and their metadata
|
||||
- Vector search
|
||||
- Full-text search
|
||||
- Document storage
|
||||
- Metadata filtering
|
||||
- Multi-modal retrieval
|
||||
|
||||
## Usage
|
||||
|
||||
To use Chrome in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use chroma.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
||||
You can install chroma using pip:
|
||||
|
||||
```bash
|
||||
pip install chromadb
|
||||
```
|
||||
|
||||
## Documentation
|
||||
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.
|
||||
|
||||
|
||||
|
||||
## Configuration
|
||||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `db_path` | `<class 'str'>` | No | PydanticUndefined | |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
```yaml
|
||||
db_path: ${env.CHROMADB_PATH}
|
||||
|
||||
```
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue