chore: Enabling Milvus for VectorIO CI

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Javier Arceo 2025-06-27 21:25:57 -04:00
parent 709eb7da33
commit c8d41d45ec
115 changed files with 2919 additions and 184 deletions

View file

@ -0,0 +1,51 @@
# inline::faiss
## Description
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
allows you to store and query vectors directly in memory.
That means you'll get fast and efficient vector retrieval.
## Features
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
## Usage
To use Faiss in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use Faiss.
3. Start storing and querying vectors.
## Installation
You can install Faiss using pip:
```bash
pip install faiss-cpu
```
## Documentation
See [Faiss' documentation](https://faiss.ai/) or the [Faiss Wiki](https://github.com/facebookresearch/faiss/wiki) for
more details about Faiss in general.
## Configuration
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | |
## Sample Configuration
```yaml
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db
```