mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-27 11:12:01 +00:00
chore: Enabling Milvus for VectorIO CI
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
709eb7da33
commit
c8d41d45ec
115 changed files with 2919 additions and 184 deletions
61
docs/source/providers/vector_io/inline_qdrant.md
Normal file
61
docs/source/providers/vector_io/inline_qdrant.md
Normal file
|
|
@ -0,0 +1,61 @@
|
|||
# inline::qdrant
|
||||
|
||||
## Description
|
||||
|
||||
|
||||
[Qdrant](https://qdrant.tech/documentation/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
That means you'll get fast and efficient vector retrieval.
|
||||
|
||||
> By default, Qdrant stores vectors in RAM, delivering incredibly fast access for datasets that fit comfortably in
|
||||
> memory. But when your dataset exceeds RAM capacity, Qdrant offers Memmap as an alternative.
|
||||
>
|
||||
> \[[An Introduction to Vector Databases](https://qdrant.tech/articles/what-is-a-vector-database/)\]
|
||||
|
||||
|
||||
|
||||
## Features
|
||||
|
||||
- Lightweight and easy to use
|
||||
- Fully integrated with Llama Stack
|
||||
- Apache 2.0 license terms
|
||||
- Store embeddings and their metadata
|
||||
- Supports search by
|
||||
[Keyword](https://qdrant.tech/articles/qdrant-introduces-full-text-filters-and-indexes/)
|
||||
and [Hybrid](https://qdrant.tech/articles/hybrid-search/#building-a-hybrid-search-system-in-qdrant) search
|
||||
- [Multilingual and Multimodal retrieval](https://qdrant.tech/documentation/multimodal-search/)
|
||||
- [Medatata filtering](https://qdrant.tech/articles/vector-search-filtering/)
|
||||
- [GPU support](https://qdrant.tech/documentation/guides/running-with-gpu/)
|
||||
|
||||
## Usage
|
||||
|
||||
To use Qdrant in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Qdrant.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
||||
You can install Qdrant using docker:
|
||||
|
||||
```bash
|
||||
docker pull qdrant/qdrant
|
||||
```
|
||||
## Documentation
|
||||
See the [Qdrant documentation](https://qdrant.tech/documentation/) for more details about Qdrant in general.
|
||||
|
||||
|
||||
## Configuration
|
||||
|
||||
| Field | Type | Required | Default | Description |
|
||||
|-------|------|----------|---------|-------------|
|
||||
| `path` | `<class 'str'>` | No | PydanticUndefined | |
|
||||
|
||||
## Sample Configuration
|
||||
|
||||
```yaml
|
||||
path: ${env.QDRANT_PATH:=~/.llama/~/.llama/dummy}/qdrant.db
|
||||
|
||||
```
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue