mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
test: Split inference tests to text and vision (#1008)
# What does this PR do? This PR splits the inference tests into text and vision to make testing on vLLM provider easier as mentioned in https://github.com/meta-llama/llama-stack/pull/951 since serving multiple models (e.g. Llama-3.2-11B-Vision-Instruct and Llama-3.1-8B-Instruct) on a single port using the OpenAI API is [not supported yet](https://docs.vllm.ai/en/v0.5.5/serving/faq.html) so it's a bit tricky to test both at the same time. ## Test Plan All previously passing tests related to text still pass: `LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/inference/test_text_inference.py` All vision tests passed via `LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/inference/test_vision_inference.py`. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
parent
a9950ce806
commit
c97e05f75e
4 changed files with 137 additions and 122 deletions
281
tests/client-sdk/inference/test_text_inference.py
Normal file
281
tests/client-sdk/inference/test_text_inference.py
Normal file
|
@ -0,0 +1,281 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
PROVIDER_TOOL_PROMPT_FORMAT = {
|
||||
"remote::ollama": "json",
|
||||
"remote::together": "json",
|
||||
"remote::fireworks": "json",
|
||||
}
|
||||
|
||||
PROVIDER_LOGPROBS_TOP_K = set(
|
||||
{
|
||||
"remote::together",
|
||||
"remote::fireworks",
|
||||
# "remote:vllm"
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def provider_tool_format(inference_provider_type):
|
||||
return (
|
||||
PROVIDER_TOOL_PROMPT_FORMAT[inference_provider_type]
|
||||
if inference_provider_type in PROVIDER_TOOL_PROMPT_FORMAT
|
||||
else None
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_provider_type(llama_stack_client):
|
||||
providers = llama_stack_client.providers.list()
|
||||
inference_providers = [p for p in providers if p.api == "inference"]
|
||||
assert len(inference_providers) > 0, "No inference providers found"
|
||||
return inference_providers[0].provider_type
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def get_weather_tool_definition():
|
||||
return {
|
||||
"tool_name": "get_weather",
|
||||
"description": "Get the current weather",
|
||||
"parameters": {
|
||||
"location": {
|
||||
"param_type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def test_text_completion_non_streaming(llama_stack_client, text_model_id):
|
||||
response = llama_stack_client.inference.completion(
|
||||
content="Complete the sentence using one word: Roses are red, violets are ",
|
||||
stream=False,
|
||||
model_id=text_model_id,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
)
|
||||
assert len(response.content) > 10
|
||||
# assert "blue" in response.content.lower().strip()
|
||||
|
||||
|
||||
def test_text_completion_streaming(llama_stack_client, text_model_id):
|
||||
response = llama_stack_client.inference.completion(
|
||||
content="Complete the sentence using one word: Roses are red, violets are ",
|
||||
stream=True,
|
||||
model_id=text_model_id,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
)
|
||||
streamed_content = [chunk.delta for chunk in response]
|
||||
content_str = "".join(streamed_content).lower().strip()
|
||||
# assert "blue" in content_str
|
||||
assert len(content_str) > 10
|
||||
|
||||
|
||||
def test_completion_log_probs_non_streaming(llama_stack_client, text_model_id, inference_provider_type):
|
||||
if inference_provider_type not in PROVIDER_LOGPROBS_TOP_K:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support log probs yet")
|
||||
|
||||
response = llama_stack_client.inference.completion(
|
||||
content="Complete the sentence: Micheael Jordan is born in ",
|
||||
stream=False,
|
||||
model_id=text_model_id,
|
||||
sampling_params={
|
||||
"max_tokens": 5,
|
||||
},
|
||||
logprobs={
|
||||
"top_k": 1,
|
||||
},
|
||||
)
|
||||
assert response.logprobs, "Logprobs should not be empty"
|
||||
assert 1 <= len(response.logprobs) <= 5 # each token has 1 logprob and here max_tokens=5
|
||||
assert all(len(logprob.logprobs_by_token) == 1 for logprob in response.logprobs)
|
||||
|
||||
|
||||
def test_completion_log_probs_streaming(llama_stack_client, text_model_id, inference_provider_type):
|
||||
if inference_provider_type not in PROVIDER_LOGPROBS_TOP_K:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support log probs yet")
|
||||
|
||||
response = llama_stack_client.inference.completion(
|
||||
content="Complete the sentence: Micheael Jordan is born in ",
|
||||
stream=True,
|
||||
model_id=text_model_id,
|
||||
sampling_params={
|
||||
"max_tokens": 5,
|
||||
},
|
||||
logprobs={
|
||||
"top_k": 1,
|
||||
},
|
||||
)
|
||||
streamed_content = [chunk for chunk in response]
|
||||
for chunk in streamed_content:
|
||||
if chunk.delta: # if there's a token, we expect logprobs
|
||||
assert chunk.logprobs, "Logprobs should not be empty"
|
||||
assert all(len(logprob.logprobs_by_token) == 1 for logprob in chunk.logprobs)
|
||||
else: # no token, no logprobs
|
||||
assert not chunk.logprobs, "Logprobs should be empty"
|
||||
|
||||
|
||||
def test_text_completion_structured_output(llama_stack_client, text_model_id, inference_provider_type):
|
||||
user_input = """
|
||||
Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003.
|
||||
"""
|
||||
|
||||
class AnswerFormat(BaseModel):
|
||||
name: str
|
||||
year_born: str
|
||||
year_retired: str
|
||||
|
||||
response = llama_stack_client.inference.completion(
|
||||
model_id=text_model_id,
|
||||
content=user_input,
|
||||
stream=False,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
response_format={
|
||||
"type": "json_schema",
|
||||
"json_schema": AnswerFormat.model_json_schema(),
|
||||
},
|
||||
)
|
||||
answer = AnswerFormat.model_validate_json(response.content)
|
||||
assert answer.name == "Michael Jordan"
|
||||
assert answer.year_born == "1963"
|
||||
assert answer.year_retired == "2003"
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"question,expected",
|
||||
[
|
||||
("What are the names of planets in our solar system?", "Earth"),
|
||||
("What are the names of the planets that have rings around them?", "Saturn"),
|
||||
],
|
||||
)
|
||||
def test_text_chat_completion_non_streaming(llama_stack_client, text_model_id, question, expected):
|
||||
response = llama_stack_client.inference.chat_completion(
|
||||
model_id=text_model_id,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": question,
|
||||
}
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
message_content = response.completion_message.content.lower().strip()
|
||||
assert len(message_content) > 0
|
||||
assert expected.lower() in message_content
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"question,expected",
|
||||
[
|
||||
("What's the name of the Sun in latin?", "Sol"),
|
||||
("What is the name of the US captial?", "Washington"),
|
||||
],
|
||||
)
|
||||
def test_text_chat_completion_streaming(llama_stack_client, text_model_id, question, expected):
|
||||
response = llama_stack_client.inference.chat_completion(
|
||||
model_id=text_model_id,
|
||||
messages=[{"role": "user", "content": question}],
|
||||
stream=True,
|
||||
)
|
||||
streamed_content = [str(chunk.event.delta.text.lower().strip()) for chunk in response]
|
||||
assert len(streamed_content) > 0
|
||||
assert expected.lower() in "".join(streamed_content)
|
||||
|
||||
|
||||
def test_text_chat_completion_with_tool_calling_and_non_streaming(
|
||||
llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format
|
||||
):
|
||||
response = llama_stack_client.inference.chat_completion(
|
||||
model_id=text_model_id,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "What's the weather like in San Francisco?"},
|
||||
],
|
||||
tools=[get_weather_tool_definition],
|
||||
tool_choice="auto",
|
||||
tool_prompt_format=provider_tool_format,
|
||||
stream=False,
|
||||
)
|
||||
# No content is returned for the system message since we expect the
|
||||
# response to be a tool call
|
||||
assert response.completion_message.content == ""
|
||||
assert response.completion_message.role == "assistant"
|
||||
|
||||
assert len(response.completion_message.tool_calls) == 1
|
||||
assert response.completion_message.tool_calls[0].tool_name == "get_weather"
|
||||
assert response.completion_message.tool_calls[0].arguments == {"location": "San Francisco, CA"}
|
||||
|
||||
|
||||
# Will extract streamed text and separate it from tool invocation content
|
||||
# The returned tool inovcation content will be a string so it's easy to comapare with expected value
|
||||
# e.g. "[get_weather, {'location': 'San Francisco, CA'}]"
|
||||
def extract_tool_invocation_content(response):
|
||||
tool_invocation_content: str = ""
|
||||
for chunk in response:
|
||||
delta = chunk.event.delta
|
||||
if delta.type == "tool_call" and delta.parse_status == "succeeded":
|
||||
call = delta.tool_call
|
||||
tool_invocation_content += f"[{call.tool_name}, {call.arguments}]"
|
||||
return tool_invocation_content
|
||||
|
||||
|
||||
def test_text_chat_completion_with_tool_calling_and_streaming(
|
||||
llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format
|
||||
):
|
||||
response = llama_stack_client.inference.chat_completion(
|
||||
model_id=text_model_id,
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "What's the weather like in San Francisco?"},
|
||||
],
|
||||
tools=[get_weather_tool_definition],
|
||||
tool_choice="auto",
|
||||
tool_prompt_format=provider_tool_format,
|
||||
stream=True,
|
||||
)
|
||||
tool_invocation_content = extract_tool_invocation_content(response)
|
||||
assert tool_invocation_content == "[get_weather, {'location': 'San Francisco, CA'}]"
|
||||
|
||||
|
||||
def test_text_chat_completion_structured_output(llama_stack_client, text_model_id, inference_provider_type):
|
||||
class AnswerFormat(BaseModel):
|
||||
first_name: str
|
||||
last_name: str
|
||||
year_of_birth: int
|
||||
num_seasons_in_nba: int
|
||||
|
||||
response = llama_stack_client.inference.chat_completion(
|
||||
model_id=text_model_id,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant. Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Please give me information about Michael Jordan.",
|
||||
},
|
||||
],
|
||||
response_format={
|
||||
"type": "json_schema",
|
||||
"json_schema": AnswerFormat.model_json_schema(),
|
||||
},
|
||||
stream=False,
|
||||
)
|
||||
answer = AnswerFormat.model_validate_json(response.completion_message.content)
|
||||
assert answer.first_name == "Michael"
|
||||
assert answer.last_name == "Jordan"
|
||||
assert answer.year_of_birth == 1963
|
||||
assert answer.num_seasons_in_nba == 15
|
Loading…
Add table
Add a link
Reference in a new issue