mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-03 09:21:45 +00:00
feat: RamaLama Documentation and Templates
RamaLama is a fully Open Source AI Model tool that facilitate local management of AI Models. https://github.com/containers/ramalama It is fully open source and supports pulling models from HuggingFace, Ollama, OCI Images, and via URI file://, http://, https:// It uses the llama.cpp and vllm AI engines for running the MODELS. It also defaults to running the models inside of containers. Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
4de45560bf
commit
c9a41288a3
14 changed files with 1331 additions and 354 deletions
|
@ -119,6 +119,7 @@ Here is a list of the various API providers and available distributions that can
|
|||
| OpenAI | Hosted | | ✅ | | | |
|
||||
| Anthropic | Hosted | | ✅ | | | |
|
||||
| Gemini | Hosted | | ✅ | | | |
|
||||
| Ramalama | Single Node | | ✅ | | | |
|
||||
|
||||
|
||||
### Distributions
|
||||
|
|
194
docs/source/distributions/self_hosted_distro/ramalama.md
Normal file
194
docs/source/distributions/self_hosted_distro/ramalama.md
Normal file
|
@ -0,0 +1,194 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
||||
# RamaLama Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-ramalama` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::ramalama` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
|
||||
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since RamaLama supports GPU acceleration.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `RAMALAMA_URL`: URL of the RamaLama server (default: `http://0.0.0.0:8080/v1`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the RamaLama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `SAFETY_MODEL`: Safety model loaded into the RamaLama server (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
||||
|
||||
## Setting up RamaLama server
|
||||
|
||||
Please check the [RamaLama Documentation](https://github.com/containers/ramalama) on how to install and run RamaLama. After installing RamaLama, you need to run `ramalama serve` to start the server.
|
||||
|
||||
In order to load models, you can run:
|
||||
|
||||
```bash
|
||||
export RAMALAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
||||
|
||||
export INFERENCE_MODEL="~/path_to_model/meta-llama/Llama-3.2-3B-Instruct"
|
||||
|
||||
ramalama serve $RAMALAMA_INFERENCE_MODEL
|
||||
```
|
||||
RamaLama requires the inference model to be the fully qualified path to the model on disk when running on MacOS, on Linux it can just be the model name.
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
|
||||
|
||||
```bash
|
||||
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
|
||||
|
||||
# ramalama names this model differently, and we must use the ramalama name when loading the model
|
||||
export RAMALAMA_SAFETY_MODEL="llama-guard3:1b"
|
||||
ramalama run $RAMALAMA_SAFETY_MODEL --keepalive 60m
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with RamaLama as the inference provider. You can do this via Conda, Venv, or Podman which has a pre-built image.
|
||||
|
||||
### Via Podman
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
podman run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama:z \
|
||||
llamastack/distribution-ramalama \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env RAMALAMA_URL=http://0.0.0.0:8080/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
# You need a local checkout of llama-stack to run this, get it using
|
||||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
podman run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama:z \
|
||||
-v ./llama_stack/templates/ramalama/run-with-safety.yaml:/root/my-run.yaml:z \
|
||||
llamastack/distribution-ramalama \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env RAMALAMA_URL=http://host.containers.internal:8080/v1
|
||||
```
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-ramalama \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
# You need a local checkout of llama-stack to run this, get it using
|
||||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/ramalama/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-ramalama \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
llama stack build --template ramalama --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
```{note}
|
||||
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ramalama/ramalama.py#L45) for the supported RamaLama models.
|
||||
```
|
||||
|
||||
To serve a new model with `ramalama`
|
||||
```bash
|
||||
ramalama run <model_name>
|
||||
```
|
||||
|
||||
To make sure that the model is being served correctly, run `ramalama ps` to get a list of models being served by ramalama.
|
||||
```
|
||||
$ ramalama ps
|
||||
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
||||
```
|
||||
|
||||
To verify that the model served by ramalama is correctly connected to Llama Stack server
|
||||
```bash
|
||||
$ llama-stack-client models list
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+======================+======================+===============+===============================================+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ramalama0 | {'ramalama_model': 'llama3.1:8b-instruct-fp16'} |
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
```
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.models.llama.datatypes import CoreModelId
|
||||
from llama_stack.models.llama.sku_types import CoreModelId
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ProviderModelEntry,
|
||||
build_hf_repo_model_entry,
|
||||
|
|
|
@ -1,344 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
GrammarResponseFormat,
|
||||
JsonSchemaResponseFormat,
|
||||
Message,
|
||||
ToolChoice,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict,
|
||||
get_sampling_options,
|
||||
)
|
||||
|
||||
|
||||
def _merge_context_into_content(message: Message) -> Message: # type: ignore
|
||||
"""
|
||||
Merge the ``context`` field of a Llama Stack ``Message`` object into
|
||||
the content field for compabilitiy with OpenAI-style APIs.
|
||||
|
||||
Generates a content string that emulates the current behavior
|
||||
of ``llama_models.llama3.api.chat_format.encode_message()``.
|
||||
|
||||
:param message: Message that may include ``context`` field
|
||||
|
||||
:returns: A version of ``message`` with any context merged into the
|
||||
``content`` field.
|
||||
"""
|
||||
if not isinstance(message, UserMessage): # Separate type check for linter
|
||||
return message
|
||||
if message.context is None:
|
||||
return message
|
||||
return UserMessage(
|
||||
role=message.role,
|
||||
# Emumate llama_models.llama3.api.chat_format.encode_message()
|
||||
content=message.content + "\n\n" + message.context,
|
||||
context=None,
|
||||
)
|
||||
|
||||
|
||||
async def llama_stack_chat_completion_to_openai_chat_completion_dict(
|
||||
request: ChatCompletionRequest,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a chat completion request in Llama Stack format into an
|
||||
equivalent set of arguments to pass to an OpenAI-compatible
|
||||
chat completions API.
|
||||
|
||||
:param request: Bundled request parameters in Llama Stack format.
|
||||
|
||||
:returns: Dictionary of key-value pairs to use as an initializer
|
||||
for a dataclass or to be converted directly to JSON and sent
|
||||
over the wire.
|
||||
"""
|
||||
|
||||
converted_messages = [
|
||||
# This mystery async call makes the parent function also be async
|
||||
await convert_message_to_openai_dict(_merge_context_into_content(m), download=True)
|
||||
for m in request.messages
|
||||
]
|
||||
# converted_tools = _llama_stack_tools_to_openai_tools(request.tools)
|
||||
|
||||
# Llama will try to use built-in tools with no tool catalog, so don't enable
|
||||
# tool choice unless at least one tool is enabled.
|
||||
converted_tool_choice = "none"
|
||||
if (
|
||||
request.tool_config is not None
|
||||
and request.tool_config.tool_choice == ToolChoice.auto
|
||||
and request.tools is not None
|
||||
and len(request.tools) > 0
|
||||
):
|
||||
converted_tool_choice = "auto"
|
||||
|
||||
# TODO: Figure out what to do with the tool_prompt_format argument.
|
||||
# Other connectors appear to drop it quietly.
|
||||
|
||||
# Use Llama Stack shared code to translate sampling parameters.
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
|
||||
# get_sampling_options() translates repetition penalties to an option that
|
||||
# OpenAI's APIs don't know about.
|
||||
# vLLM's OpenAI-compatible API also handles repetition penalties wrong.
|
||||
# For now, translate repetition penalties into a format that vLLM's broken
|
||||
# API will handle correctly. Two wrongs make a right...
|
||||
if "repeat_penalty" in sampling_options:
|
||||
del sampling_options["repeat_penalty"]
|
||||
if request.sampling_params.repetition_penalty is not None and request.sampling_params.repetition_penalty != 1.0:
|
||||
sampling_options["repetition_penalty"] = request.sampling_params.repetition_penalty
|
||||
|
||||
# Convert a single response format into four different parameters, per
|
||||
# the OpenAI spec
|
||||
guided_decoding_options = dict()
|
||||
if request.response_format is None:
|
||||
# Use defaults
|
||||
pass
|
||||
elif isinstance(request.response_format, JsonSchemaResponseFormat):
|
||||
guided_decoding_options["guided_json"] = request.response_format.json_schema
|
||||
elif isinstance(request.response_format, GrammarResponseFormat):
|
||||
guided_decoding_options["guided_grammar"] = request.response_format.bnf
|
||||
else:
|
||||
raise TypeError(f"ResponseFormat object is of unexpected subtype '{type(request.response_format)}'")
|
||||
|
||||
logprob_options = dict()
|
||||
if request.logprobs is not None:
|
||||
logprob_options["logprobs"] = request.logprobs.top_k
|
||||
|
||||
# Marshall together all the arguments for a ChatCompletionRequest
|
||||
request_options = {
|
||||
"model": request.model,
|
||||
"messages": converted_messages,
|
||||
"tool_choice": converted_tool_choice,
|
||||
"stream": request.stream,
|
||||
**sampling_options,
|
||||
**guided_decoding_options,
|
||||
**logprob_options,
|
||||
}
|
||||
|
||||
return request_options
|
||||
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import warnings
|
||||
from typing import Any, AsyncGenerator, Dict
|
||||
|
||||
from openai import AsyncStream
|
||||
from openai.types.chat.chat_completion import (
|
||||
Choice as OpenAIChoice,
|
||||
)
|
||||
from openai.types.completion import Completion as OpenAICompletion
|
||||
from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
TokenLogProbs,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
GreedySamplingStrategy,
|
||||
TopKSamplingStrategy,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
_convert_openai_finish_reason,
|
||||
convert_message_to_openai_dict_new,
|
||||
convert_tooldef_to_openai_tool,
|
||||
)
|
||||
|
||||
|
||||
async def convert_chat_completion_request(
|
||||
request: ChatCompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# messages -> messages
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# response_format -> GrammarResponseFormat TODO(mf)
|
||||
# response_format -> JsonSchemaResponseFormat: response_format = "json_object" & nvext["guided_json"] = json_schema
|
||||
# tools -> tools
|
||||
# tool_choice ("auto", "required") -> tool_choice
|
||||
# tool_prompt_format -> TBD
|
||||
# stream -> stream
|
||||
# logprobs -> logprobs
|
||||
|
||||
if request.response_format and not isinstance(request.response_format, JsonSchemaResponseFormat):
|
||||
raise ValueError(
|
||||
f"Unsupported response format: {request.response_format}. Only JsonSchemaResponseFormat is supported."
|
||||
)
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
messages=[await convert_message_to_openai_dict_new(message) for message in request.messages],
|
||||
stream=request.stream,
|
||||
n=n,
|
||||
extra_body=dict(nvext=nvext),
|
||||
extra_headers={
|
||||
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||
},
|
||||
)
|
||||
|
||||
if request.response_format:
|
||||
# server bug - setting guided_json changes the behavior of response_format resulting in an error
|
||||
# payload.update(response_format="json_object")
|
||||
nvext.update(guided_json=request.response_format.json_schema)
|
||||
|
||||
if request.tools:
|
||||
payload.update(tools=[convert_tooldef_to_openai_tool(tool) for tool in request.tools])
|
||||
if request.tool_config.tool_choice:
|
||||
payload.update(
|
||||
tool_choice=request.tool_config.tool_choice.value
|
||||
) # we cannot include tool_choice w/o tools, server will complain
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=True)
|
||||
payload.update(top_logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
strategy = request.sampling_params.strategy
|
||||
if isinstance(strategy, TopPSamplingStrategy):
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=strategy.top_p)
|
||||
payload.update(temperature=strategy.temperature)
|
||||
elif isinstance(strategy, TopKSamplingStrategy):
|
||||
if strategy.top_k != -1 and strategy.top_k < 1:
|
||||
warnings.warn("top_k must be -1 or >= 1", stacklevel=2)
|
||||
nvext.update(top_k=strategy.top_k)
|
||||
elif isinstance(strategy, GreedySamplingStrategy):
|
||||
nvext.update(top_k=-1)
|
||||
else:
|
||||
raise ValueError(f"Unsupported sampling strategy: {strategy}")
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def convert_completion_request(
|
||||
request: CompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# prompt -> prompt
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# response_format -> nvext.guided_json
|
||||
# stream -> stream
|
||||
# logprobs.top_k -> logprobs
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
prompt=request.content,
|
||||
stream=request.stream,
|
||||
extra_body=dict(nvext=nvext),
|
||||
extra_headers={
|
||||
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||
},
|
||||
n=n,
|
||||
)
|
||||
|
||||
if request.response_format:
|
||||
# this is not openai compliant, it is a nim extension
|
||||
nvext.update(guided_json=request.response_format.json_schema)
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
if request.sampling_params.strategy == "top_p":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=request.sampling_params.top_p)
|
||||
elif request.sampling_params.strategy == "top_k":
|
||||
if request.sampling_params.top_k != -1 and request.sampling_params.top_k < 1:
|
||||
warnings.warn("top_k must be -1 or >= 1", stacklevel=2)
|
||||
nvext.update(top_k=request.sampling_params.top_k)
|
||||
elif request.sampling_params.strategy == "greedy":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(temperature=request.sampling_params.temperature)
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def _convert_openai_completion_logprobs(
|
||||
logprobs: Optional[OpenAICompletionLogprobs],
|
||||
) -> Optional[List[TokenLogProbs]]:
|
||||
"""
|
||||
Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs.
|
||||
"""
|
||||
if not logprobs:
|
||||
return None
|
||||
|
||||
return [TokenLogProbs(logprobs_by_token=logprobs) for logprobs in logprobs.top_logprobs]
|
||||
|
||||
|
||||
def convert_openai_completion_choice(
|
||||
choice: OpenAIChoice,
|
||||
) -> CompletionResponse:
|
||||
"""
|
||||
Convert an OpenAI Completion Choice into a CompletionResponse.
|
||||
"""
|
||||
return CompletionResponse(
|
||||
content=choice.text,
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
|
||||
)
|
||||
|
||||
|
||||
async def convert_openai_completion_stream(
|
||||
stream: AsyncStream[OpenAICompletion],
|
||||
) -> AsyncGenerator[CompletionResponse, None]:
|
||||
"""
|
||||
Convert a stream of OpenAI Completions into a stream
|
||||
of ChatCompletionResponseStreamChunks.
|
||||
"""
|
||||
async for chunk in stream:
|
||||
choice = chunk.choices[0]
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=choice.text,
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
|
||||
)
|
|
@ -5,9 +5,12 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import AsyncGenerator, List, Optional
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
|
||||
from openai import AsyncOpenAI, BadRequestError
|
||||
from openai.types.chat.chat_completion_chunk import (
|
||||
ChatCompletionChunk as OpenAIChatCompletionChunk,
|
||||
)
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
|
@ -30,6 +33,12 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
OpenAICompletion,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
@ -37,17 +46,16 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_chat_completion_request,
|
||||
convert_completion_request,
|
||||
convert_openai_chat_completion_choice,
|
||||
convert_openai_chat_completion_stream,
|
||||
convert_openai_completion_choice,
|
||||
convert_openai_completion_stream,
|
||||
prepare_openai_completion_params,
|
||||
)
|
||||
|
||||
from .models import model_entries
|
||||
from .openai_utils import (
|
||||
convert_chat_completion_request,
|
||||
convert_completion_request,
|
||||
convert_openai_completion_choice,
|
||||
convert_openai_completion_stream,
|
||||
)
|
||||
|
||||
logger = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
@ -180,9 +188,132 @@ class RamalamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
model = await self.register_helper.register_model(model)
|
||||
res = await self.client.models.list()
|
||||
available_models = [m.id async for m in res]
|
||||
if model.provider_resource_id not in available_models:
|
||||
# Ramalama handles paths on MacOS and Linux differently
|
||||
if (model.provider_resource_id.split("/")[-1] not in available_models) and (
|
||||
model.provider_resource_id not in available_models
|
||||
):
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} is not being served by vLLM. "
|
||||
f"Model {model.provider_resource_id} is not being served by Ramalama. "
|
||||
f"Available models: {', '.join(available_models)}"
|
||||
)
|
||||
return model
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
) -> OpenAICompletion:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
prompt=prompt,
|
||||
best_of=best_of,
|
||||
echo=echo,
|
||||
frequency_penalty=frequency_penalty,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
presence_penalty=presence_penalty,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self.client.completions.create(**params) # type: ignore
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[OpenAIResponseFormatParam] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
return await self.client.chat.completions.create(**params) # type: ignore
|
||||
|
||||
async def batch_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content_batch: List[InterleavedContent],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
):
|
||||
raise NotImplementedError("Batch completion is not supported for Ramalama")
|
||||
|
||||
async def batch_chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages_batch: List[List[Message]],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
):
|
||||
raise NotImplementedError("Batch chat completion is not supported for Ramalama")
|
||||
|
|
|
@ -78,6 +78,7 @@ from openai.types.chat.chat_completion_content_part_image_param import (
|
|||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
Function as OpenAIFunction,
|
||||
)
|
||||
from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
|
@ -97,8 +98,10 @@ from llama_stack.apis.inference import (
|
|||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
GrammarResponseFormat,
|
||||
GreedySamplingStrategy,
|
||||
Message,
|
||||
SamplingParams,
|
||||
|
@ -1466,3 +1469,292 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
model=model,
|
||||
object="chat.completion",
|
||||
)
|
||||
|
||||
|
||||
async def convert_chat_completion_request(
|
||||
request: ChatCompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# messages -> messages
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# response_format -> GrammarResponseFormat TODO(mf)
|
||||
# response_format -> JsonSchemaResponseFormat: response_format = "json_object" & nvext["guided_json"] = json_schema
|
||||
# tools -> tools
|
||||
# tool_choice ("auto", "required") -> tool_choice
|
||||
# tool_prompt_format -> TBD
|
||||
# stream -> stream
|
||||
# logprobs -> logprobs
|
||||
|
||||
if request.response_format and not isinstance(request.response_format, JsonSchemaResponseFormat):
|
||||
raise ValueError(
|
||||
f"Unsupported response format: {request.response_format}. Only JsonSchemaResponseFormat is supported."
|
||||
)
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
messages=[await convert_message_to_openai_dict_new(message) for message in request.messages],
|
||||
stream=request.stream,
|
||||
n=n,
|
||||
extra_body=dict(nvext=nvext),
|
||||
extra_headers={
|
||||
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||
},
|
||||
)
|
||||
|
||||
if request.response_format:
|
||||
# server bug - setting guided_json changes the behavior of response_format resulting in an error
|
||||
# payload.update(response_format="json_object")
|
||||
nvext.update(guided_json=request.response_format.json_schema)
|
||||
|
||||
if request.tools:
|
||||
payload.update(tools=[convert_tooldef_to_openai_tool(tool) for tool in request.tools])
|
||||
if request.tool_config.tool_choice:
|
||||
payload.update(
|
||||
tool_choice=request.tool_config.tool_choice.value
|
||||
) # we cannot include tool_choice w/o tools, server will complain
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=True)
|
||||
payload.update(top_logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
strategy = request.sampling_params.strategy
|
||||
if isinstance(strategy, TopPSamplingStrategy):
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=strategy.top_p)
|
||||
payload.update(temperature=strategy.temperature)
|
||||
elif isinstance(strategy, TopKSamplingStrategy):
|
||||
if strategy.top_k != -1 and strategy.top_k < 1:
|
||||
warnings.warn("top_k must be -1 or >= 1", stacklevel=2)
|
||||
nvext.update(top_k=strategy.top_k)
|
||||
elif isinstance(strategy, GreedySamplingStrategy):
|
||||
nvext.update(top_k=-1)
|
||||
else:
|
||||
raise ValueError(f"Unsupported sampling strategy: {strategy}")
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def convert_completion_request(
|
||||
request: CompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# prompt -> prompt
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# response_format -> nvext.guided_json
|
||||
# stream -> stream
|
||||
# logprobs.top_k -> logprobs
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
prompt=request.content,
|
||||
stream=request.stream,
|
||||
extra_body=dict(nvext=nvext),
|
||||
extra_headers={
|
||||
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||
},
|
||||
n=n,
|
||||
)
|
||||
|
||||
if request.response_format:
|
||||
# this is not openai compliant, it is a nim extension
|
||||
nvext.update(guided_json=request.response_format.json_schema)
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
if request.sampling_params.strategy == "top_p":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=request.sampling_params.top_p)
|
||||
elif request.sampling_params.strategy == "top_k":
|
||||
if request.sampling_params.top_k != -1 and request.sampling_params.top_k < 1:
|
||||
warnings.warn("top_k must be -1 or >= 1", stacklevel=2)
|
||||
nvext.update(top_k=request.sampling_params.top_k)
|
||||
elif request.sampling_params.strategy == "greedy":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(temperature=request.sampling_params.temperature)
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def _convert_openai_completion_logprobs(
|
||||
logprobs: Optional[OpenAICompletionLogprobs],
|
||||
) -> Optional[List[TokenLogProbs]]:
|
||||
"""
|
||||
Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs.
|
||||
"""
|
||||
if not logprobs:
|
||||
return None
|
||||
|
||||
return [TokenLogProbs(logprobs_by_token=logprobs) for logprobs in logprobs.top_logprobs]
|
||||
|
||||
|
||||
def convert_openai_completion_choice(
|
||||
choice: OpenAIChoice,
|
||||
) -> CompletionResponse:
|
||||
"""
|
||||
Convert an OpenAI Completion Choice into a CompletionResponse.
|
||||
"""
|
||||
return CompletionResponse(
|
||||
content=choice.text,
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
|
||||
)
|
||||
|
||||
|
||||
async def convert_openai_completion_stream(
|
||||
stream: AsyncStream[OpenAICompletion],
|
||||
) -> AsyncGenerator[CompletionResponse, None]:
|
||||
"""
|
||||
Convert a stream of OpenAI Completions into a stream
|
||||
of ChatCompletionResponseStreamChunks.
|
||||
"""
|
||||
async for chunk in stream:
|
||||
choice = chunk.choices[0]
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=choice.text,
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
|
||||
)
|
||||
|
||||
|
||||
def _merge_context_into_content(message: Message) -> Message: # type: ignore
|
||||
"""
|
||||
Merge the ``context`` field of a Llama Stack ``Message`` object into
|
||||
the content field for compabilitiy with OpenAI-style APIs.
|
||||
|
||||
Generates a content string that emulates the current behavior
|
||||
of ``llama_models.llama3.api.chat_format.encode_message()``.
|
||||
|
||||
:param message: Message that may include ``context`` field
|
||||
|
||||
:returns: A version of ``message`` with any context merged into the
|
||||
``content`` field.
|
||||
"""
|
||||
if not isinstance(message, UserMessage): # Separate type check for linter
|
||||
return message
|
||||
if message.context is None:
|
||||
return message
|
||||
return UserMessage(
|
||||
role=message.role,
|
||||
# Emumate llama_models.llama3.api.chat_format.encode_message()
|
||||
content=message.content + "\n\n" + message.context,
|
||||
context=None,
|
||||
)
|
||||
|
||||
|
||||
async def llama_stack_chat_completion_to_openai_chat_completion_dict(
|
||||
request: ChatCompletionRequest,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a chat completion request in Llama Stack format into an
|
||||
equivalent set of arguments to pass to an OpenAI-compatible
|
||||
chat completions API.
|
||||
|
||||
:param request: Bundled request parameters in Llama Stack format.
|
||||
|
||||
:returns: Dictionary of key-value pairs to use as an initializer
|
||||
for a dataclass or to be converted directly to JSON and sent
|
||||
over the wire.
|
||||
"""
|
||||
|
||||
converted_messages = [
|
||||
# This mystery async call makes the parent function also be async
|
||||
await convert_message_to_openai_dict(_merge_context_into_content(m), download=True)
|
||||
for m in request.messages
|
||||
]
|
||||
# converted_tools = _llama_stack_tools_to_openai_tools(request.tools)
|
||||
|
||||
# Llama will try to use built-in tools with no tool catalog, so don't enable
|
||||
# tool choice unless at least one tool is enabled.
|
||||
converted_tool_choice = "none"
|
||||
if (
|
||||
request.tool_config is not None
|
||||
and request.tool_config.tool_choice == ToolChoice.auto
|
||||
and request.tools is not None
|
||||
and len(request.tools) > 0
|
||||
):
|
||||
converted_tool_choice = "auto"
|
||||
|
||||
# TODO: Figure out what to do with the tool_prompt_format argument.
|
||||
# Other connectors appear to drop it quietly.
|
||||
|
||||
# Use Llama Stack shared code to translate sampling parameters.
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
|
||||
# get_sampling_options() translates repetition penalties to an option that
|
||||
# OpenAI's APIs don't know about.
|
||||
# vLLM's OpenAI-compatible API also handles repetition penalties wrong.
|
||||
# For now, translate repetition penalties into a format that vLLM's broken
|
||||
# API will handle correctly. Two wrongs make a right...
|
||||
if "repeat_penalty" in sampling_options:
|
||||
del sampling_options["repeat_penalty"]
|
||||
if request.sampling_params.repetition_penalty is not None and request.sampling_params.repetition_penalty != 1.0:
|
||||
sampling_options["repetition_penalty"] = request.sampling_params.repetition_penalty
|
||||
|
||||
# Convert a single response format into four different parameters, per
|
||||
# the OpenAI spec
|
||||
guided_decoding_options = dict()
|
||||
if request.response_format is None:
|
||||
# Use defaults
|
||||
pass
|
||||
elif isinstance(request.response_format, JsonSchemaResponseFormat):
|
||||
guided_decoding_options["guided_json"] = request.response_format.json_schema
|
||||
elif isinstance(request.response_format, GrammarResponseFormat):
|
||||
guided_decoding_options["guided_grammar"] = request.response_format.bnf
|
||||
else:
|
||||
raise TypeError(f"ResponseFormat object is of unexpected subtype '{type(request.response_format)}'")
|
||||
|
||||
logprob_options = dict()
|
||||
if request.logprobs is not None:
|
||||
logprob_options["logprobs"] = request.logprobs.top_k
|
||||
|
||||
# Marshall together all the arguments for a ChatCompletionRequest
|
||||
request_options = {
|
||||
"model": request.model,
|
||||
"messages": converted_messages,
|
||||
"tool_choice": converted_tool_choice,
|
||||
"stream": request.stream,
|
||||
**sampling_options,
|
||||
**guided_decoding_options,
|
||||
**logprob_options,
|
||||
}
|
||||
|
||||
return request_options
|
||||
|
|
|
@ -536,6 +536,43 @@
|
|||
"sentence-transformers --no-deps",
|
||||
"torch torchvision --index-url https://download.pytorch.org/whl/cpu"
|
||||
],
|
||||
"ramalama": [
|
||||
"aiohttp",
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"chromadb-client",
|
||||
"datasets",
|
||||
"emoji",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"langdetect",
|
||||
"matplotlib",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
"opentelemetry-sdk",
|
||||
"pandas",
|
||||
"pillow",
|
||||
"psycopg2-binary",
|
||||
"pymongo",
|
||||
"pypdf",
|
||||
"pythainlp",
|
||||
"ramalama",
|
||||
"redis",
|
||||
"requests",
|
||||
"scikit-learn",
|
||||
"scipy",
|
||||
"sentencepiece",
|
||||
"tqdm",
|
||||
"transformers",
|
||||
"tree_sitter",
|
||||
"uvicorn"
|
||||
],
|
||||
"remote-vllm": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
|
|
7
llama_stack/templates/ramalama/__init__.py
Normal file
7
llama_stack/templates/ramalama/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .ramalama import get_distribution_template # noqa: F401
|
31
llama_stack/templates/ramalama/build.yaml
Normal file
31
llama_stack/templates/ramalama/build.yaml
Normal file
|
@ -0,0 +1,31 @@
|
|||
version: '2'
|
||||
distribution_spec:
|
||||
description: Use (an external) RamaLama server for running LLM inference
|
||||
providers:
|
||||
inference:
|
||||
- remote::ramalama
|
||||
vector_io:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
- inline::code-interpreter
|
||||
- inline::rag-runtime
|
||||
image_type: conda
|
183
llama_stack/templates/ramalama/doc_template.md
Normal file
183
llama_stack/templates/ramalama/doc_template.md
Normal file
|
@ -0,0 +1,183 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# RamaLama Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since RamaLama supports GPU acceleration.
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
## Setting up RamaLama server
|
||||
|
||||
Please check the [RamaLama Documentation](https://github.com/containers/ramalama) on how to install and run RamaLama. After installing RamaLama, you need to run `ramalama serve` to start the server.
|
||||
|
||||
In order to load models, you can run:
|
||||
|
||||
```bash
|
||||
export RAMALAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
||||
|
||||
export INFERENCE_MODEL="~/path_to_model/meta-llama/Llama-3.2-3B-Instruct"
|
||||
|
||||
ramalama serve $RAMALAMA_INFERENCE_MODEL
|
||||
```
|
||||
RamaLama requires the inference model to be the fully qualified path to the model on disk when running on MacOS, on Linux it can just be the model name.
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
|
||||
|
||||
```bash
|
||||
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
|
||||
|
||||
# ramalama names this model differently, and we must use the ramalama name when loading the model
|
||||
export RAMALAMA_SAFETY_MODEL="llama-guard3:1b"
|
||||
ramalama run $RAMALAMA_SAFETY_MODEL --keepalive 60m
|
||||
```
|
||||
|
||||
## Running Llama Stack
|
||||
|
||||
Now you are ready to run Llama Stack with RamaLama as the inference provider. You can do this via Conda, Venv, or Podman which has a pre-built image.
|
||||
|
||||
### Via Podman
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
podman run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama:z \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env RAMALAMA_URL=http://0.0.0.0:8080/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
# You need a local checkout of llama-stack to run this, get it using
|
||||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
podman run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama:z \
|
||||
-v ./llama_stack/templates/ramalama/run-with-safety.yaml:/root/my-run.yaml:z \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env RAMALAMA_URL=http://host.containers.internal:8080/v1
|
||||
```
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
# You need a local checkout of llama-stack to run this, get it using
|
||||
# git clone https://github.com/meta-llama/llama-stack.git
|
||||
cd /path/to/llama-stack
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
-v ./llama_stack/templates/ramalama/run-with-safety.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
If you are using Llama Stack Safety / Shield APIs, use:
|
||||
|
||||
```bash
|
||||
llama stack run ./run-with-safety.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
||||
--env SAFETY_MODEL=$SAFETY_MODEL \
|
||||
--env RAMALAMA_URL=http://host.docker.internal:8080/v1
|
||||
```
|
||||
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
```{note}
|
||||
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ramalama/ramalama.py#L45) for the supported RamaLama models.
|
||||
```
|
||||
|
||||
To serve a new model with `ramalama`
|
||||
```bash
|
||||
ramalama run <model_name>
|
||||
```
|
||||
|
||||
To make sure that the model is being served correctly, run `ramalama ps` to get a list of models being served by ramalama.
|
||||
```
|
||||
$ ramalama ps
|
||||
|
||||
NAME ID SIZE PROCESSOR UNTIL
|
||||
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
||||
```
|
||||
|
||||
To verify that the model served by ramalama is correctly connected to Llama Stack server
|
||||
```bash
|
||||
$ llama-stack-client models list
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
| identifier | llama_model | provider_id | metadata |
|
||||
+======================+======================+===============+===============================================+
|
||||
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ramalama0 | {'ramalama_model': 'llama3.1:8b-instruct-fp16'} |
|
||||
+----------------------+----------------------+---------------+-----------------------------------------------+
|
||||
```
|
147
llama_stack/templates/ramalama/ramalama.py
Normal file
147
llama_stack/templates/ramalama/ramalama.py
Normal file
|
@ -0,0 +1,147 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import (
|
||||
ModelInput,
|
||||
Provider,
|
||||
ShieldInput,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.ramalama import RamalamaImplConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::ramalama"],
|
||||
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
"inline::code-interpreter",
|
||||
"inline::rag-runtime",
|
||||
],
|
||||
}
|
||||
name = "ramalama"
|
||||
inference_provider = Provider(
|
||||
provider_id="ramalama",
|
||||
provider_type="remote::ramalama",
|
||||
config=RamalamaImplConfig.sample_run_config(),
|
||||
)
|
||||
embedding_provider = Provider(
|
||||
provider_id="sentence-transformers",
|
||||
provider_type="inline::sentence-transformers",
|
||||
config=SentenceTransformersInferenceConfig.sample_run_config(),
|
||||
)
|
||||
vector_io_provider = Provider(
|
||||
provider_id="faiss",
|
||||
provider_type="inline::faiss",
|
||||
config=FaissVectorIOConfig.sample_run_config(f"distributions/{name}"),
|
||||
)
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="ramalama",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="ramalama",
|
||||
)
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="tavily-search",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::rag",
|
||||
provider_id="rag-runtime",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::code_interpreter",
|
||||
provider_id="code-interpreter",
|
||||
),
|
||||
]
|
||||
|
||||
return DistributionTemplate(
|
||||
name=name,
|
||||
distro_type="self_hosted",
|
||||
description="Use (an external) RamaLama server for running LLM inference",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider, embedding_provider],
|
||||
"vector_io": [vector_io_provider],
|
||||
},
|
||||
default_models=[inference_model],
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
embedding_provider,
|
||||
],
|
||||
"vector_io": [vector_io_provider],
|
||||
"safety": [
|
||||
Provider(
|
||||
provider_id="llama-guard",
|
||||
provider_type="inline::llama-guard",
|
||||
config={},
|
||||
),
|
||||
Provider(
|
||||
provider_id="code-scanner",
|
||||
provider_type="inline::code-scanner",
|
||||
config={},
|
||||
),
|
||||
],
|
||||
},
|
||||
default_models=[inference_model, safety_model],
|
||||
default_shields=[
|
||||
ShieldInput(
|
||||
shield_id="${env.SAFETY_MODEL}",
|
||||
provider_id="llama-guard",
|
||||
),
|
||||
ShieldInput(
|
||||
shield_id="CodeScanner",
|
||||
provider_id="code-scanner",
|
||||
),
|
||||
],
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"RAMALAMA_URL": (
|
||||
"http://0.0.0.0:8080/v1",
|
||||
"URL of the RamaLama server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Inference model loaded into the RamaLama server",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta-llama/Llama-Guard-3-1B",
|
||||
"Safety model loaded into the RamaLama server",
|
||||
),
|
||||
},
|
||||
)
|
44
llama_stack/templates/ramalama/report.md
Normal file
44
llama_stack/templates/ramalama/report.md
Normal file
|
@ -0,0 +1,44 @@
|
|||
# Report for ramalama distribution
|
||||
|
||||
## Supported Models
|
||||
| Model Descriptor | ramalama |
|
||||
|:---|:---|
|
||||
| Llama-3-8B-Instruct | ❌ |
|
||||
| Llama-3-70B-Instruct | ❌ |
|
||||
| Llama3.1-8B-Instruct | ✅ |
|
||||
| Llama3.1-70B-Instruct | ✅ |
|
||||
| Llama3.1-405B-Instruct | ✅ |
|
||||
| Llama3.2-1B-Instruct | ✅ |
|
||||
| Llama3.2-3B-Instruct | ✅ |
|
||||
| Llama3.2-11B-Vision-Instruct | ✅ |
|
||||
| Llama3.2-90B-Vision-Instruct | ✅ |
|
||||
| Llama3.3-70B-Instruct | ✅ |
|
||||
| Llama-Guard-3-11B-Vision | ❌ |
|
||||
| Llama-Guard-3-1B | ✅ |
|
||||
| Llama-Guard-3-8B | ✅ |
|
||||
| Llama-Guard-2-8B | ❌ |
|
||||
|
||||
## Inference
|
||||
| Model | API | Capability | Test | Status |
|
||||
|:----- |:-----|:-----|:-----|:-----|
|
||||
| Llama-3.1-8B-Instruct | /chat_completion | streaming | test_text_chat_completion_streaming | ✅ |
|
||||
| Llama-3.2-11B-Vision-Instruct | /chat_completion | streaming | test_image_chat_completion_streaming | ❌ |
|
||||
| Llama-3.2-11B-Vision-Instruct | /chat_completion | non_streaming | test_image_chat_completion_non_streaming | ❌ |
|
||||
| Llama-3.1-8B-Instruct | /chat_completion | non_streaming | test_text_chat_completion_non_streaming | ✅ |
|
||||
| Llama-3.1-8B-Instruct | /chat_completion | tool_calling | test_text_chat_completion_with_tool_calling_and_streaming | ✅ |
|
||||
| Llama-3.1-8B-Instruct | /chat_completion | tool_calling | test_text_chat_completion_with_tool_calling_and_non_streaming | ✅ |
|
||||
| Llama-3.1-8B-Instruct | /completion | streaming | test_text_completion_streaming | ✅ |
|
||||
| Llama-3.1-8B-Instruct | /completion | non_streaming | test_text_completion_non_streaming | ✅ |
|
||||
| Llama-3.1-8B-Instruct | /completion | structured_output | test_text_completion_structured_output | ✅ |
|
||||
|
||||
## Vector IO
|
||||
| API | Capability | Test | Status |
|
||||
|:-----|:-----|:-----|:-----|
|
||||
| /retrieve | | test_vector_db_retrieve | ✅ |
|
||||
|
||||
## Agents
|
||||
| API | Capability | Test | Status |
|
||||
|:-----|:-----|:-----|:-----|
|
||||
| /create_agent_turn | rag | test_rag_agent | ✅ |
|
||||
| /create_agent_turn | custom_tool | test_custom_tool | ✅ |
|
||||
| /create_agent_turn | code_execution | test_code_interpreter_for_attachments | ✅ |
|
132
llama_stack/templates/ramalama/run-with-safety.yaml
Normal file
132
llama_stack/templates/ramalama/run-with-safety.yaml
Normal file
|
@ -0,0 +1,132 @@
|
|||
version: '2'
|
||||
image_name: ramalama
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ramalama
|
||||
provider_type: remote::ramalama
|
||||
config:
|
||||
url: ${env.RAMALAMA_URL:http://localhost:8080}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:distributions/ramalama}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
- provider_id: code-scanner
|
||||
provider_type: inline::code-scanner
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/ramalama/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/meta_reference_eval.db
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/huggingface_datasetio.db
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/localfs_datasetio.db
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: code-interpreter
|
||||
provider_type: inline::code-interpreter
|
||||
config: {}
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ramalama
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: ramalama
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: llama-guard
|
||||
- shield_id: CodeScanner
|
||||
provider_id: code-scanner
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
- toolgroup_id: builtin::code_interpreter
|
||||
provider_id: code-interpreter
|
||||
server:
|
||||
port: 8321
|
122
llama_stack/templates/ramalama/run.yaml
Normal file
122
llama_stack/templates/ramalama/run.yaml
Normal file
|
@ -0,0 +1,122 @@
|
|||
version: '2'
|
||||
image_name: ramalama
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: ramalama
|
||||
provider_type: remote::ramalama
|
||||
config:
|
||||
url: ${env.RAMALAMA_URL:http://localhost:8080}
|
||||
- provider_id: sentence-transformers
|
||||
provider_type: inline::sentence-transformers
|
||||
config: {}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:distributions/ramalama}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/ramalama/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/meta_reference_eval.db
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/huggingface_datasetio.db
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/localfs_datasetio.db
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: code-interpreter
|
||||
provider_type: inline::code-interpreter
|
||||
config: {}
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ramalama}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: ramalama
|
||||
model_type: llm
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
- toolgroup_id: builtin::code_interpreter
|
||||
provider_id: code-interpreter
|
||||
server:
|
||||
port: 8321
|
Loading…
Add table
Add a link
Reference in a new issue