mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-22 04:27:52 +00:00
docs: auto generated documentation for providers (#2543)
# What does this PR do? Simple approach to get some provider pages in the docs. Add or update description fields in the provider configuration class using Pydantic’s Field, ensuring these descriptions are clear and complete, as they will be used to auto-generate provider documentation via ./scripts/distro_codegen.py instead of editing the docs manually. Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
parent
8d8e90d78e
commit
c9a49a80e8
96 changed files with 2562 additions and 65 deletions
|
@ -18,60 +18,92 @@ Llama Stack supports external providers that live outside of the main codebase.
|
|||
## Agents
|
||||
Run multi-step agentic workflows with LLMs with tool usage, memory (RAG), etc.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
agents/index
|
||||
```
|
||||
|
||||
## DatasetIO
|
||||
Interfaces with datasets and data loaders.
|
||||
|
||||
## Eval
|
||||
Generates outputs (via Inference or Agents) and perform scoring.
|
||||
|
||||
## Inference
|
||||
Runs inference with an LLM.
|
||||
|
||||
## Post Training
|
||||
Fine-tunes a model.
|
||||
|
||||
#### Post Training Providers
|
||||
The following providers are available for Post Training:
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
external
|
||||
post_training/huggingface
|
||||
post_training/torchtune
|
||||
post_training/nvidia_nemo
|
||||
datasetio/index
|
||||
```
|
||||
|
||||
## Eval
|
||||
Generates outputs (via Inference or Agents) and perform scoring.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
eval/index
|
||||
```
|
||||
|
||||
## Inference
|
||||
Runs inference with an LLM.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
inference/index
|
||||
```
|
||||
|
||||
## Post Training
|
||||
Fine-tunes a model.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
post_training/index
|
||||
```
|
||||
|
||||
## Safety
|
||||
Applies safety policies to the output at a Systems (not only model) level.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
safety/index
|
||||
```
|
||||
|
||||
## Scoring
|
||||
Evaluates the outputs of the system.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
scoring/index
|
||||
```
|
||||
|
||||
## Telemetry
|
||||
Collects telemetry data from the system.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
telemetry/index
|
||||
```
|
||||
|
||||
## Tool Runtime
|
||||
Is associated with the ToolGroup resouces.
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
tool_runtime/index
|
||||
```
|
||||
|
||||
## Vector IO
|
||||
|
||||
Vector IO refers to operations on vector databases, such as adding documents, searching, and deleting documents.
|
||||
Vector IO plays a crucial role in [Retreival Augmented Generation (RAG)](../..//building_applications/rag), where the vector
|
||||
io and database are used to store and retrieve documents for retrieval.
|
||||
|
||||
#### Vector IO Providers
|
||||
The following providers (i.e., databases) are available for Vector IO:
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 1
|
||||
|
||||
external
|
||||
vector_io/faiss
|
||||
vector_io/sqlite-vec
|
||||
vector_io/chromadb
|
||||
vector_io/pgvector
|
||||
vector_io/qdrant
|
||||
vector_io/milvus
|
||||
vector_io/weaviate
|
||||
vector_io/index
|
||||
```
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue