mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-16 01:53:10 +00:00
docs: auto generated documentation for providers (#2543)
# What does this PR do? Simple approach to get some provider pages in the docs. Add or update description fields in the provider configuration class using Pydantic’s Field, ensuring these descriptions are clear and complete, as they will be used to auto-generate provider documentation via ./scripts/distro_codegen.py instead of editing the docs manually. Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
parent
8d8e90d78e
commit
c9a49a80e8
96 changed files with 2562 additions and 65 deletions
|
@ -1,33 +0,0 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Faiss
|
||||
|
||||
[Faiss](https://github.com/facebookresearch/faiss) is an inline vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly in memory.
|
||||
That means you'll get fast and efficient vector retrieval.
|
||||
|
||||
## Features
|
||||
|
||||
- Lightweight and easy to use
|
||||
- Fully integrated with Llama Stack
|
||||
- GPU support
|
||||
|
||||
## Usage
|
||||
|
||||
To use Faiss in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Faiss.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
||||
You can install Faiss using pip:
|
||||
|
||||
```bash
|
||||
pip install faiss-cpu
|
||||
```
|
||||
## Documentation
|
||||
See [Faiss' documentation](https://faiss.ai/) or the [Faiss Wiki](https://github.com/facebookresearch/faiss/wiki) for
|
||||
more details about Faiss in general.
|
Loading…
Add table
Add a link
Reference in a new issue