mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
docs: update test_agents to use new Agent SDK API (#1402)
# Summary: new Agent SDK API is added in https://github.com/meta-llama/llama-stack-client-python/pull/178 Update docs and test to reflect this. Closes https://github.com/meta-llama/llama-stack/issues/1365 # Test Plan: ```bash py.test -v -s --nbval-lax ./docs/getting_started.ipynb LLAMA_STACK_CONFIG=fireworks \ pytest -s -v tests/integration/agents/test_agents.py \ --safety-shield meta-llama/Llama-Guard-3-8B --text-model meta-llama/Llama-3.1-8B-Instruct ```
This commit is contained in:
parent
3d71e5a036
commit
ca2910d27a
13 changed files with 121 additions and 206 deletions
|
@ -14,18 +14,16 @@ Agents are configured using the `AgentConfig` class, which includes:
|
|||
- **Safety Shields**: Guardrails to ensure responsible AI behavior
|
||||
|
||||
```python
|
||||
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||
from llama_stack_client.lib.agents.agent import Agent
|
||||
|
||||
# Configure an agent
|
||||
agent_config = AgentConfig(
|
||||
model="meta-llama/Llama-3-70b-chat",
|
||||
instructions="You are a helpful assistant that can use tools to answer questions.",
|
||||
toolgroups=["builtin::code_interpreter", "builtin::rag/knowledge_search"],
|
||||
)
|
||||
|
||||
# Create the agent
|
||||
agent = Agent(llama_stack_client, agent_config)
|
||||
agent = Agent(
|
||||
llama_stack_client,
|
||||
model="meta-llama/Llama-3-70b-chat",
|
||||
instructions="You are a helpful assistant that can use tools to answer questions.",
|
||||
tools=["builtin::code_interpreter", "builtin::rag/knowledge_search"],
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Sessions
|
||||
|
|
|
@ -70,18 +70,18 @@ Each step in this process can be monitored and controlled through configurations
|
|||
from llama_stack_client import LlamaStackClient
|
||||
from llama_stack_client.lib.agents.agent import Agent
|
||||
from llama_stack_client.lib.agents.event_logger import EventLogger
|
||||
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||
from rich.pretty import pprint
|
||||
|
||||
# Replace host and port
|
||||
client = LlamaStackClient(base_url=f"http://{HOST}:{PORT}")
|
||||
|
||||
agent_config = AgentConfig(
|
||||
agent = Agent(
|
||||
client,
|
||||
# Check with `llama-stack-client models list`
|
||||
model="Llama3.2-3B-Instruct",
|
||||
instructions="You are a helpful assistant",
|
||||
# Enable both RAG and tool usage
|
||||
toolgroups=[
|
||||
tools=[
|
||||
{
|
||||
"name": "builtin::rag/knowledge_search",
|
||||
"args": {"vector_db_ids": ["my_docs"]},
|
||||
|
@ -98,8 +98,6 @@ agent_config = AgentConfig(
|
|||
"max_tokens": 2048,
|
||||
},
|
||||
)
|
||||
|
||||
agent = Agent(client, agent_config)
|
||||
session_id = agent.create_session("monitored_session")
|
||||
|
||||
# Stream the agent's execution steps
|
||||
|
|
|
@ -25,17 +25,13 @@ In this example, we will show you how to:
|
|||
```python
|
||||
from llama_stack_client.lib.agents.agent import Agent
|
||||
from llama_stack_client.lib.agents.event_logger import EventLogger
|
||||
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||
|
||||
agent_config = AgentConfig(
|
||||
agent = Agent(
|
||||
client,
|
||||
model="meta-llama/Llama-3.3-70B-Instruct",
|
||||
instructions="You are a helpful assistant. Use search tool to answer the questions. ",
|
||||
toolgroups=["builtin::websearch"],
|
||||
input_shields=[],
|
||||
output_shields=[],
|
||||
enable_session_persistence=False,
|
||||
tools=["builtin::websearch"],
|
||||
)
|
||||
agent = Agent(client, agent_config)
|
||||
user_prompts = [
|
||||
"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.",
|
||||
"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.",
|
||||
|
|
|
@ -86,15 +86,14 @@ results = client.tool_runtime.rag_tool.query(
|
|||
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
|
||||
|
||||
```python
|
||||
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||
from llama_stack_client.lib.agents.agent import Agent
|
||||
|
||||
# Configure agent with memory
|
||||
agent_config = AgentConfig(
|
||||
# Create agent with memory
|
||||
agent = Agent(
|
||||
client,
|
||||
model="meta-llama/Llama-3.3-70B-Instruct",
|
||||
instructions="You are a helpful assistant",
|
||||
enable_session_persistence=False,
|
||||
toolgroups=[
|
||||
tools=[
|
||||
{
|
||||
"name": "builtin::rag/knowledge_search",
|
||||
"args": {
|
||||
|
@ -103,8 +102,6 @@ agent_config = AgentConfig(
|
|||
}
|
||||
],
|
||||
)
|
||||
|
||||
agent = Agent(client, agent_config)
|
||||
session_id = agent.create_session("rag_session")
|
||||
|
||||
|
||||
|
|
|
@ -149,15 +149,7 @@ def my_tool(input: int) -> int:
|
|||
Once defined, simply pass the tool to the agent config. `Agent` will take care of the rest (calling the model with the tool definition, executing the tool, and returning the result to the model for the next iteration).
|
||||
```python
|
||||
# Example agent config with client provided tools
|
||||
client_tools = [
|
||||
my_tool,
|
||||
]
|
||||
|
||||
agent_config = AgentConfig(
|
||||
...,
|
||||
client_tools=[client_tool.get_tool_definition() for client_tool in client_tools],
|
||||
)
|
||||
agent = Agent(client, agent_config, client_tools)
|
||||
agent = Agent(client, ..., tools=[my_tool])
|
||||
```
|
||||
|
||||
Refer to [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/blob/main/examples/agents/e2e_loop_with_client_tools.py) for an example of how to use client provided tools.
|
||||
|
@ -194,10 +186,10 @@ group_tools = client.tools.list_tools(toolgroup_id="search_tools")
|
|||
|
||||
```python
|
||||
from llama_stack_client.lib.agents.agent import Agent
|
||||
from llama_stack_client.types.agent_create_params import AgentConfig
|
||||
|
||||
# Configure the AI agent with necessary parameters
|
||||
agent_config = AgentConfig(
|
||||
# Instantiate the AI agent with the given configuration
|
||||
agent = Agent(
|
||||
client,
|
||||
name="code-interpreter",
|
||||
description="A code interpreter agent for executing Python code snippets",
|
||||
instructions="""
|
||||
|
@ -205,14 +197,10 @@ agent_config = AgentConfig(
|
|||
Always show the generated code, never generate your own code, and never anticipate results.
|
||||
""",
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
toolgroups=["builtin::code_interpreter"],
|
||||
tools=["builtin::code_interpreter"],
|
||||
max_infer_iters=5,
|
||||
enable_session_persistence=False,
|
||||
)
|
||||
|
||||
# Instantiate the AI agent with the given configuration
|
||||
agent = Agent(client, agent_config)
|
||||
|
||||
# Start a session
|
||||
session_id = agent.create_session("tool_session")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue