mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-16 06:27:58 +00:00
docs: Add detailed docstrings to API models and update OpenAPI spec (#2889)
This PR focuses on improving the developer experience by adding comprehensive docstrings to the API data models across the Llama Stack. These docstrings provide detailed explanations for each model and its fields, making the API easier to understand and use. **Key changes:** - **Added Docstrings:** Added reST formatted docstrings to Pydantic models in the `llama_stack/apis/` directory. This includes models for: - Agents (`agents.py`) - Benchmarks (`benchmarks.py`) - Datasets (`datasets.py`) - Inference (`inference.py`) - And many other API modules. - **OpenAPI Spec Update:** Regenerated the OpenAPI specification (`docs/_static/llama-stack-spec.yaml` and `docs/_static/llama-stack-spec.html`) to include the new docstrings. This will be reflected in the API documentation, providing richer information to users. **Impact:** - Developers using the Llama Stack API will have a better understanding of the data structures. - The auto-generated API documentation is now more informative. --------- Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
cd5c6a2fcd
commit
cb7354a9ce
28 changed files with 4079 additions and 812 deletions
|
@ -18,6 +18,12 @@ from llama_stack.schema_utils import json_schema_type, register_schema, webmetho
|
|||
|
||||
@json_schema_type
|
||||
class OptimizerType(Enum):
|
||||
"""Available optimizer algorithms for training.
|
||||
:cvar adam: Adaptive Moment Estimation optimizer
|
||||
:cvar adamw: AdamW optimizer with weight decay
|
||||
:cvar sgd: Stochastic Gradient Descent optimizer
|
||||
"""
|
||||
|
||||
adam = "adam"
|
||||
adamw = "adamw"
|
||||
sgd = "sgd"
|
||||
|
@ -25,12 +31,28 @@ class OptimizerType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class DatasetFormat(Enum):
|
||||
"""Format of the training dataset.
|
||||
:cvar instruct: Instruction-following format with prompt and completion
|
||||
:cvar dialog: Multi-turn conversation format with messages
|
||||
"""
|
||||
|
||||
instruct = "instruct"
|
||||
dialog = "dialog"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DataConfig(BaseModel):
|
||||
"""Configuration for training data and data loading.
|
||||
|
||||
:param dataset_id: Unique identifier for the training dataset
|
||||
:param batch_size: Number of samples per training batch
|
||||
:param shuffle: Whether to shuffle the dataset during training
|
||||
:param data_format: Format of the dataset (instruct or dialog)
|
||||
:param validation_dataset_id: (Optional) Unique identifier for the validation dataset
|
||||
:param packed: (Optional) Whether to pack multiple samples into a single sequence for efficiency
|
||||
:param train_on_input: (Optional) Whether to compute loss on input tokens as well as output tokens
|
||||
"""
|
||||
|
||||
dataset_id: str
|
||||
batch_size: int
|
||||
shuffle: bool
|
||||
|
@ -42,6 +64,14 @@ class DataConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class OptimizerConfig(BaseModel):
|
||||
"""Configuration parameters for the optimization algorithm.
|
||||
|
||||
:param optimizer_type: Type of optimizer to use (adam, adamw, or sgd)
|
||||
:param lr: Learning rate for the optimizer
|
||||
:param weight_decay: Weight decay coefficient for regularization
|
||||
:param num_warmup_steps: Number of steps for learning rate warmup
|
||||
"""
|
||||
|
||||
optimizer_type: OptimizerType
|
||||
lr: float
|
||||
weight_decay: float
|
||||
|
@ -50,6 +80,14 @@ class OptimizerConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class EfficiencyConfig(BaseModel):
|
||||
"""Configuration for memory and compute efficiency optimizations.
|
||||
|
||||
:param enable_activation_checkpointing: (Optional) Whether to use activation checkpointing to reduce memory usage
|
||||
:param enable_activation_offloading: (Optional) Whether to offload activations to CPU to save GPU memory
|
||||
:param memory_efficient_fsdp_wrap: (Optional) Whether to use memory-efficient FSDP wrapping
|
||||
:param fsdp_cpu_offload: (Optional) Whether to offload FSDP parameters to CPU
|
||||
"""
|
||||
|
||||
enable_activation_checkpointing: bool | None = False
|
||||
enable_activation_offloading: bool | None = False
|
||||
memory_efficient_fsdp_wrap: bool | None = False
|
||||
|
@ -58,6 +96,18 @@ class EfficiencyConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class TrainingConfig(BaseModel):
|
||||
"""Comprehensive configuration for the training process.
|
||||
|
||||
:param n_epochs: Number of training epochs to run
|
||||
:param max_steps_per_epoch: Maximum number of steps to run per epoch
|
||||
:param gradient_accumulation_steps: Number of steps to accumulate gradients before updating
|
||||
:param max_validation_steps: (Optional) Maximum number of validation steps per epoch
|
||||
:param data_config: (Optional) Configuration for data loading and formatting
|
||||
:param optimizer_config: (Optional) Configuration for the optimization algorithm
|
||||
:param efficiency_config: (Optional) Configuration for memory and compute optimizations
|
||||
:param dtype: (Optional) Data type for model parameters (bf16, fp16, fp32)
|
||||
"""
|
||||
|
||||
n_epochs: int
|
||||
max_steps_per_epoch: int = 1
|
||||
gradient_accumulation_steps: int = 1
|
||||
|
@ -70,6 +120,18 @@ class TrainingConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class LoraFinetuningConfig(BaseModel):
|
||||
"""Configuration for Low-Rank Adaptation (LoRA) fine-tuning.
|
||||
|
||||
:param type: Algorithm type identifier, always "LoRA"
|
||||
:param lora_attn_modules: List of attention module names to apply LoRA to
|
||||
:param apply_lora_to_mlp: Whether to apply LoRA to MLP layers
|
||||
:param apply_lora_to_output: Whether to apply LoRA to output projection layers
|
||||
:param rank: Rank of the LoRA adaptation (lower rank = fewer parameters)
|
||||
:param alpha: LoRA scaling parameter that controls adaptation strength
|
||||
:param use_dora: (Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation)
|
||||
:param quantize_base: (Optional) Whether to quantize the base model weights
|
||||
"""
|
||||
|
||||
type: Literal["LoRA"] = "LoRA"
|
||||
lora_attn_modules: list[str]
|
||||
apply_lora_to_mlp: bool
|
||||
|
@ -82,6 +144,13 @@ class LoraFinetuningConfig(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class QATFinetuningConfig(BaseModel):
|
||||
"""Configuration for Quantization-Aware Training (QAT) fine-tuning.
|
||||
|
||||
:param type: Algorithm type identifier, always "QAT"
|
||||
:param quantizer_name: Name of the quantization algorithm to use
|
||||
:param group_size: Size of groups for grouped quantization
|
||||
"""
|
||||
|
||||
type: Literal["QAT"] = "QAT"
|
||||
quantizer_name: str
|
||||
group_size: int
|
||||
|
@ -93,7 +162,11 @@ register_schema(AlgorithmConfig, name="AlgorithmConfig")
|
|||
|
||||
@json_schema_type
|
||||
class PostTrainingJobLogStream(BaseModel):
|
||||
"""Stream of logs from a finetuning job."""
|
||||
"""Stream of logs from a finetuning job.
|
||||
|
||||
:param job_uuid: Unique identifier for the training job
|
||||
:param log_lines: List of log message strings from the training process
|
||||
"""
|
||||
|
||||
job_uuid: str
|
||||
log_lines: list[str]
|
||||
|
@ -101,6 +174,10 @@ class PostTrainingJobLogStream(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class RLHFAlgorithm(Enum):
|
||||
"""Available reinforcement learning from human feedback algorithms.
|
||||
:cvar dpo: Direct Preference Optimization algorithm
|
||||
"""
|
||||
|
||||
dpo = "dpo"
|
||||
|
||||
|
||||
|
@ -114,13 +191,39 @@ class DPOLossType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class DPOAlignmentConfig(BaseModel):
|
||||
"""Configuration for Direct Preference Optimization (DPO) alignment.
|
||||
|
||||
:param reward_scale: Scaling factor for the reward signal
|
||||
:param reward_clip: Maximum absolute value for reward clipping
|
||||
:param epsilon: Small value added for numerical stability
|
||||
:param gamma: Discount factor for future rewards
|
||||
:param beta: Temperature parameter for the DPO loss
|
||||
:param loss_type: The type of loss function to use for DPO
|
||||
"""
|
||||
|
||||
reward_scale: float
|
||||
reward_clip: float
|
||||
epsilon: float
|
||||
gamma: float
|
||||
beta: float
|
||||
loss_type: DPOLossType = DPOLossType.sigmoid
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingRLHFRequest(BaseModel):
|
||||
"""Request to finetune a model."""
|
||||
"""Request to finetune a model using reinforcement learning from human feedback.
|
||||
|
||||
:param job_uuid: Unique identifier for the training job
|
||||
:param finetuned_model: URL or path to the base model to fine-tune
|
||||
:param dataset_id: Unique identifier for the training dataset
|
||||
:param validation_dataset_id: Unique identifier for the validation dataset
|
||||
:param algorithm: RLHF algorithm to use for training
|
||||
:param algorithm_config: Configuration parameters for the RLHF algorithm
|
||||
:param optimizer_config: Configuration parameters for the optimization algorithm
|
||||
:param training_config: Configuration parameters for the training process
|
||||
:param hyperparam_search_config: Configuration for hyperparameter search
|
||||
:param logger_config: Configuration for training logging
|
||||
"""
|
||||
|
||||
job_uuid: str
|
||||
|
||||
|
@ -146,7 +249,16 @@ class PostTrainingJob(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class PostTrainingJobStatusResponse(BaseModel):
|
||||
"""Status of a finetuning job."""
|
||||
"""Status of a finetuning job.
|
||||
|
||||
:param job_uuid: Unique identifier for the training job
|
||||
:param status: Current status of the training job
|
||||
:param scheduled_at: (Optional) Timestamp when the job was scheduled
|
||||
:param started_at: (Optional) Timestamp when the job execution began
|
||||
:param completed_at: (Optional) Timestamp when the job finished, if completed
|
||||
:param resources_allocated: (Optional) Information about computational resources allocated to the job
|
||||
:param checkpoints: List of model checkpoints created during training
|
||||
"""
|
||||
|
||||
job_uuid: str
|
||||
status: JobStatus
|
||||
|
@ -166,7 +278,11 @@ class ListPostTrainingJobsResponse(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class PostTrainingJobArtifactsResponse(BaseModel):
|
||||
"""Artifacts of a finetuning job."""
|
||||
"""Artifacts of a finetuning job.
|
||||
|
||||
:param job_uuid: Unique identifier for the training job
|
||||
:param checkpoints: List of model checkpoints created during training
|
||||
"""
|
||||
|
||||
job_uuid: str
|
||||
checkpoints: list[Checkpoint] = Field(default_factory=list)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue