docs: Add detailed docstrings to API models and update OpenAPI spec (#2889)

This PR focuses on improving the developer experience by adding
comprehensive docstrings to the API data models across the Llama Stack.
These docstrings provide detailed explanations for each model and its
fields, making the API easier to understand and use.

**Key changes:**
- **Added Docstrings:** Added reST formatted docstrings to Pydantic
models in the `llama_stack/apis/` directory. This includes models for:
  - Agents (`agents.py`)
  - Benchmarks (`benchmarks.py`)
  - Datasets (`datasets.py`)
  - Inference (`inference.py`)
  - And many other API modules.
- **OpenAPI Spec Update:** Regenerated the OpenAPI specification
(`docs/_static/llama-stack-spec.yaml` and
`docs/_static/llama-stack-spec.html`) to include the new docstrings.
This will be reflected in the API documentation, providing richer
information to users.

**Impact:**
- Developers using the Llama Stack API will have a better understanding
of the data structures.
- The auto-generated API documentation is now more informative.

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
Sai Prashanth S 2025-07-30 16:32:59 -07:00 committed by GitHub
parent cd5c6a2fcd
commit cb7354a9ce
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
28 changed files with 4079 additions and 812 deletions

View file

@ -22,7 +22,7 @@ class RRFRanker(BaseModel):
:param type: The type of ranker, always "rrf"
:param impact_factor: The impact factor for RRF scoring. Higher values give more weight to higher-ranked results.
Must be greater than 0. Default of 60 is from the original RRF paper (Cormack et al., 2009).
Must be greater than 0
"""
type: Literal["rrf"] = "rrf"
@ -76,12 +76,25 @@ class RAGDocument(BaseModel):
@json_schema_type
class RAGQueryResult(BaseModel):
"""Result of a RAG query containing retrieved content and metadata.
:param content: (Optional) The retrieved content from the query
:param metadata: Additional metadata about the query result
"""
content: InterleavedContent | None = None
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class RAGQueryGenerator(Enum):
"""Types of query generators for RAG systems.
:cvar default: Default query generator using simple text processing
:cvar llm: LLM-based query generator for enhanced query understanding
:cvar custom: Custom query generator implementation
"""
default = "default"
llm = "llm"
custom = "custom"
@ -103,12 +116,25 @@ class RAGSearchMode(StrEnum):
@json_schema_type
class DefaultRAGQueryGeneratorConfig(BaseModel):
"""Configuration for the default RAG query generator.
:param type: Type of query generator, always 'default'
:param separator: String separator used to join query terms
"""
type: Literal["default"] = "default"
separator: str = " "
@json_schema_type
class LLMRAGQueryGeneratorConfig(BaseModel):
"""Configuration for the LLM-based RAG query generator.
:param type: Type of query generator, always 'llm'
:param model: Name of the language model to use for query generation
:param template: Template string for formatting the query generation prompt
"""
type: Literal["llm"] = "llm"
model: str
template: str
@ -166,7 +192,12 @@ class RAGToolRuntime(Protocol):
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
"""Index documents so they can be used by the RAG system"""
"""Index documents so they can be used by the RAG system.
:param documents: List of documents to index in the RAG system
:param vector_db_id: ID of the vector database to store the document embeddings
:param chunk_size_in_tokens: (Optional) Size in tokens for document chunking during indexing
"""
...
@webmethod(route="/tool-runtime/rag-tool/query", method="POST")
@ -176,5 +207,11 @@ class RAGToolRuntime(Protocol):
vector_db_ids: list[str],
query_config: RAGQueryConfig | None = None,
) -> RAGQueryResult:
"""Query the RAG system for context; typically invoked by the agent"""
"""Query the RAG system for context; typically invoked by the agent.
:param content: The query content to search for in the indexed documents
:param vector_db_ids: List of vector database IDs to search within
:param query_config: (Optional) Configuration parameters for the query operation
:returns: RAGQueryResult containing the retrieved content and metadata
"""
...