[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)

* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
This commit is contained in:
Xi Yan 2024-10-24 14:52:30 -07:00 committed by GitHub
parent e70420a06e
commit cb84034567
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
28 changed files with 904 additions and 51 deletions

View file

@ -0,0 +1,103 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import os
from pathlib import Path
from typing import Optional
import fire
import httpx
from termcolor import cprint
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.datasets.client import DatasetsClient
from llama_stack.providers.tests.datasetio.test_datasetio import data_url_from_file
class DatasetIOClient(DatasetIO):
def __init__(self, base_url: str):
self.base_url = base_url
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def get_rows_paginated(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{self.base_url}/datasetio/get_rows_paginated",
params={
"dataset_id": dataset_id,
"rows_in_page": rows_in_page,
"page_token": page_token,
"filter_condition": filter_condition,
},
headers={"Content-Type": "application/json"},
timeout=60,
)
response.raise_for_status()
if not response.json():
return
return PaginatedRowsResult(**response.json())
async def run_main(host: str, port: int):
client = DatasetsClient(f"http://{host}:{port}")
# register dataset
test_file = (
Path(os.path.abspath(__file__)).parent.parent.parent
/ "providers/tests/datasetio/test_dataset.csv"
)
test_url = data_url_from_file(str(test_file))
response = await client.register_dataset(
DatasetDefWithProvider(
identifier="test-dataset",
provider_id="meta0",
url=URL(
uri=test_url,
),
dataset_schema={
"generated_answer": StringType(),
"expected_answer": StringType(),
"input_query": StringType(),
},
)
)
# list datasets
list_dataset = await client.list_datasets()
cprint(list_dataset, "blue")
# datsetio client to get the rows
datasetio_client = DatasetIOClient(f"http://{host}:{port}")
response = await datasetio_client.get_rows_paginated(
dataset_id="test-dataset",
rows_in_page=4,
page_token=None,
filter_condition=None,
)
cprint(f"Returned {len(response.rows)} rows \n {response}", "green")
def main(host: str, port: int):
asyncio.run(run_main(host, port))
if __name__ == "__main__":
fire.Fire(main)