mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-15 17:44:01 +00:00
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip * dataset validation * test_scoring * cleanup * clean up test * comments * error checking * dataset client * test client: * datasetio client * clean up * basic scoring function works * scorer wip * equality scorer * score batch impl * score batch * update scoring test * refactor * validate scorer input * address comments * add all rows scores to ScoringResult * bugfix * scoring function def rename
This commit is contained in:
parent
e70420a06e
commit
cb84034567
28 changed files with 904 additions and 51 deletions
6
llama_stack/providers/tests/datasetio/test_dataset.csv
Normal file
6
llama_stack/providers/tests/datasetio/test_dataset.csv
Normal file
|
@ -0,0 +1,6 @@
|
|||
input_query,generated_answer,expected_answer
|
||||
What is the capital of France?,London,Paris
|
||||
Who is the CEO of Meta?,Mark Zuckerberg,Mark Zuckerberg
|
||||
What is the largest planet in our solar system?,Jupiter,Jupiter
|
||||
What is the smallest country in the world?,China,Vatican City
|
||||
What is the currency of Japan?,Yen,Yen
|
|
|
@ -8,8 +8,13 @@ import os
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
import base64
|
||||
import mimetypes
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
||||
|
||||
# How to run this test:
|
||||
|
@ -41,14 +46,35 @@ async def datasetio_settings():
|
|||
}
|
||||
|
||||
|
||||
def data_url_from_file(file_path: str) -> str:
|
||||
if not os.path.exists(file_path):
|
||||
raise FileNotFoundError(f"File not found: {file_path}")
|
||||
|
||||
with open(file_path, "rb") as file:
|
||||
file_content = file.read()
|
||||
|
||||
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||
mime_type, _ = mimetypes.guess_type(file_path)
|
||||
|
||||
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||
|
||||
return data_url
|
||||
|
||||
|
||||
async def register_dataset(datasets_impl: Datasets):
|
||||
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
|
||||
test_url = data_url_from_file(str(test_file))
|
||||
dataset = DatasetDefWithProvider(
|
||||
identifier="test_dataset",
|
||||
provider_id=os.environ["PROVIDER_ID"],
|
||||
url=URL(
|
||||
uri="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
||||
uri=test_url,
|
||||
),
|
||||
columns_schema={},
|
||||
dataset_schema={
|
||||
"generated_answer": StringType(),
|
||||
"expected_answer": StringType(),
|
||||
"input_query": StringType(),
|
||||
},
|
||||
)
|
||||
await datasets_impl.register_dataset(dataset)
|
||||
|
||||
|
@ -100,10 +126,10 @@ async def test_get_rows_paginated(datasetio_settings):
|
|||
# iterate over all rows
|
||||
response = await datasetio_impl.get_rows_paginated(
|
||||
dataset_id="test_dataset",
|
||||
rows_in_page=10,
|
||||
rows_in_page=2,
|
||||
page_token=response.next_page_token,
|
||||
)
|
||||
|
||||
assert isinstance(response.rows, list)
|
||||
assert len(response.rows) == 10
|
||||
assert response.next_page_token == "13"
|
||||
assert len(response.rows) == 2
|
||||
assert response.next_page_token == "5"
|
||||
|
|
5
llama_stack/providers/tests/scoring/__init__.py
Normal file
5
llama_stack/providers/tests/scoring/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -0,0 +1,9 @@
|
|||
providers:
|
||||
datasetio:
|
||||
- provider_id: test-meta
|
||||
provider_type: meta-reference
|
||||
config: {}
|
||||
scoring:
|
||||
- provider_id: test-meta
|
||||
provider_type: meta-reference
|
||||
config: {}
|
69
llama_stack/providers/tests/scoring/test_scoring.py
Normal file
69
llama_stack/providers/tests/scoring/test_scoring.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
||||
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
||||
# since it depends on the provider you are testing. On top of that you need
|
||||
# `pytest` and `pytest-asyncio` installed.
|
||||
#
|
||||
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
||||
#
|
||||
# 3. Run:
|
||||
#
|
||||
# ```bash
|
||||
# PROVIDER_ID=<your_provider> \
|
||||
# PROVIDER_CONFIG=provider_config.yaml \
|
||||
# pytest -s llama_stack/providers/tests/scoring/test_scoring.py \
|
||||
# --tb=short --disable-warnings
|
||||
# ```
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def scoring_settings():
|
||||
impls = await resolve_impls_for_test(Api.scoring, deps=[Api.datasetio])
|
||||
return {
|
||||
"scoring_impl": impls[Api.scoring],
|
||||
"scoring_functions_impl": impls[Api.scoring_functions],
|
||||
"datasets_impl": impls[Api.datasets],
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_scoring_functions_list(scoring_settings):
|
||||
scoring_functions_impl = scoring_settings["scoring_functions_impl"]
|
||||
scoring_functions = await scoring_functions_impl.list_scoring_functions()
|
||||
assert isinstance(scoring_functions, list)
|
||||
assert len(scoring_functions) > 0
|
||||
function_ids = [f.identifier for f in scoring_functions]
|
||||
assert "equality" in function_ids
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_scoring_score(scoring_settings):
|
||||
scoring_impl = scoring_settings["scoring_impl"]
|
||||
datasets_impl = scoring_settings["datasets_impl"]
|
||||
await register_dataset(datasets_impl)
|
||||
|
||||
response = await datasets_impl.list_datasets()
|
||||
assert len(response) == 1
|
||||
|
||||
response = await scoring_impl.score_batch(
|
||||
dataset_id=response[0].identifier,
|
||||
scoring_functions=["equality"],
|
||||
)
|
||||
|
||||
assert len(response.results) == 1
|
||||
assert "equality" in response.results
|
Loading…
Add table
Add a link
Reference in a new issue