mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 14:57:20 +00:00
Merge branch 'eval_task_register' into mmlu_benchmark
This commit is contained in:
commit
cc6edf6287
72 changed files with 306 additions and 304 deletions
|
@ -11,7 +11,7 @@ import pytest_asyncio
|
|||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
|
||||
from llama_stack.providers.inline.meta_reference.agents import (
|
||||
from llama_stack.providers.inline.agents.meta_reference import (
|
||||
MetaReferenceAgentsImplConfig,
|
||||
)
|
||||
|
||||
|
|
|
@ -52,7 +52,7 @@ class Testeval:
|
|||
response = await eval_impl.evaluate_rows(
|
||||
input_rows=rows.rows,
|
||||
scoring_functions=scoring_functions,
|
||||
eval_task_config=AppEvalTaskConfig(
|
||||
task_config=AppEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
sampling_params=SamplingParams(),
|
||||
|
@ -76,13 +76,13 @@ class Testeval:
|
|||
]
|
||||
|
||||
response = await eval_impl.run_eval(
|
||||
eval_task_def=EvalTaskDef(
|
||||
task=EvalTaskDef(
|
||||
# NOTE: this is needed to make the router work for all app evals
|
||||
identifier="meta-reference::app_eval",
|
||||
dataset_id="test_dataset_for_eval",
|
||||
scoring_functions=scoring_functions,
|
||||
),
|
||||
eval_task_config=AppEvalTaskConfig(
|
||||
task_config=AppEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
sampling_params=SamplingParams(),
|
||||
|
@ -90,9 +90,13 @@ class Testeval:
|
|||
),
|
||||
)
|
||||
assert response.job_id == "0"
|
||||
job_status = await eval_impl.job_status(response.job_id)
|
||||
job_status = await eval_impl.job_status(
|
||||
response.job_id, "meta-reference::app_eval"
|
||||
)
|
||||
assert job_status and job_status.value == "completed"
|
||||
eval_response = await eval_impl.job_result(response.job_id)
|
||||
eval_response = await eval_impl.job_result(
|
||||
response.job_id, "meta-reference::app_eval"
|
||||
)
|
||||
|
||||
assert eval_response is not None
|
||||
assert len(eval_response.generations) == 5
|
||||
|
|
|
@ -10,7 +10,7 @@ import pytest
|
|||
import pytest_asyncio
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
from llama_stack.providers.inline.meta_reference.inference import (
|
||||
from llama_stack.providers.inline.inference.meta_reference import (
|
||||
MetaReferenceInferenceConfig,
|
||||
)
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ import pytest
|
|||
import pytest_asyncio
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
from llama_stack.providers.inline.meta_reference.memory import FaissImplConfig
|
||||
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
|
||||
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
|
||||
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ import pytest
|
|||
import pytest_asyncio
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
from llama_stack.providers.inline.meta_reference.safety import (
|
||||
from llama_stack.providers.inline.safety.meta_reference import (
|
||||
LlamaGuardShieldConfig,
|
||||
SafetyConfig,
|
||||
)
|
||||
|
|
|
@ -44,10 +44,10 @@ class TestScoring:
|
|||
)
|
||||
assert len(rows.rows) == 3
|
||||
|
||||
scoring_functions = [
|
||||
"meta-reference::llm_as_judge_8b_correctness",
|
||||
"meta-reference::equality",
|
||||
]
|
||||
scoring_functions = {
|
||||
"meta-reference::llm_as_judge_8b_correctness": None,
|
||||
"meta-reference::equality": None,
|
||||
}
|
||||
response = await scoring_impl.score(
|
||||
input_rows=rows.rows,
|
||||
scoring_functions=scoring_functions,
|
||||
|
@ -83,7 +83,7 @@ class TestScoring:
|
|||
)
|
||||
assert len(rows.rows) == 3
|
||||
|
||||
params = {
|
||||
scoring_functions = {
|
||||
"meta-reference::llm_as_judge_8b_correctness": LLMAsJudgeScoringFnParams(
|
||||
judge_model="Llama3.1-405B-Instruct",
|
||||
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
|
||||
|
@ -91,13 +91,9 @@ class TestScoring:
|
|||
)
|
||||
}
|
||||
|
||||
scoring_functions = [
|
||||
"meta-reference::llm_as_judge_8b_correctness",
|
||||
]
|
||||
response = await scoring_impl.score(
|
||||
input_rows=rows.rows,
|
||||
scoring_functions=scoring_functions,
|
||||
scoring_params=params,
|
||||
)
|
||||
assert len(response.results) == len(scoring_functions)
|
||||
for x in scoring_functions:
|
||||
|
@ -108,7 +104,6 @@ class TestScoring:
|
|||
response = await scoring_impl.score_batch(
|
||||
dataset_id="test_dataset",
|
||||
scoring_functions=scoring_functions,
|
||||
scoring_params=params,
|
||||
)
|
||||
assert len(response.results) == len(scoring_functions)
|
||||
for x in scoring_functions:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue