mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-01 16:24:44 +00:00
Allow models to be registered as long as llama model is provided
This commit is contained in:
parent
f1b9578f8d
commit
ccb5445d2a
2 changed files with 30 additions and 21 deletions
|
@ -8,6 +8,7 @@ import pytest
|
||||||
|
|
||||||
from llama_models.datatypes import CoreModelId
|
from llama_models.datatypes import CoreModelId
|
||||||
|
|
||||||
|
|
||||||
# How to run this test:
|
# How to run this test:
|
||||||
#
|
#
|
||||||
# pytest -v -s llama_stack/providers/tests/inference/test_model_registration.py
|
# pytest -v -s llama_stack/providers/tests/inference/test_model_registration.py
|
||||||
|
@ -17,8 +18,17 @@ from llama_models.datatypes import CoreModelId
|
||||||
|
|
||||||
class TestModelRegistration:
|
class TestModelRegistration:
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_register_unsupported_model(self, inference_stack):
|
async def test_register_unsupported_model(self, inference_stack, inference_model):
|
||||||
_, models_impl = inference_stack
|
inference_impl, models_impl = inference_stack
|
||||||
|
|
||||||
|
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||||
|
if provider.__provider_spec__.provider_type not in (
|
||||||
|
"meta-reference",
|
||||||
|
"remote::ollama",
|
||||||
|
"remote::vllm",
|
||||||
|
"remote::tgi",
|
||||||
|
):
|
||||||
|
pytest.skip("70B instruct is too big only for local inference providers")
|
||||||
|
|
||||||
# Try to register a model that's too large for local inference
|
# Try to register a model that's too large for local inference
|
||||||
with pytest.raises(Exception) as exc_info:
|
with pytest.raises(Exception) as exc_info:
|
||||||
|
@ -37,21 +47,10 @@ class TestModelRegistration:
|
||||||
)
|
)
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_update_model(self, inference_stack):
|
async def test_register_with_llama_model(self, inference_stack):
|
||||||
_, models_impl = inference_stack
|
_, models_impl = inference_stack
|
||||||
|
|
||||||
# Register a model to update
|
_ = await models_impl.register_model(
|
||||||
model_id = CoreModelId.llama3_1_8b_instruct.value
|
model_id="custom-model",
|
||||||
old_model = await models_impl.register_model(model_id=model_id)
|
metadata={"llama_model": CoreModelId.llama3_1_8b_instruct.value},
|
||||||
|
|
||||||
# Update the model
|
|
||||||
new_model_id = CoreModelId.llama3_2_3b_instruct.value
|
|
||||||
updated_model = await models_impl.update_model(
|
|
||||||
model_id=model_id, provider_model_id=new_model_id
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Retrieve the updated model to verify changes
|
|
||||||
assert updated_model.provider_resource_id != old_model.provider_resource_id
|
|
||||||
|
|
||||||
# Cleanup
|
|
||||||
await models_impl.unregister_model(model_id=model_id)
|
|
||||||
|
|
|
@ -51,7 +51,7 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
||||||
if identifier in self.alias_to_provider_id_map:
|
if identifier in self.alias_to_provider_id_map:
|
||||||
return self.alias_to_provider_id_map[identifier]
|
return self.alias_to_provider_id_map[identifier]
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown model: `{identifier}`")
|
return None
|
||||||
|
|
||||||
def get_llama_model(self, provider_model_id: str) -> str:
|
def get_llama_model(self, provider_model_id: str) -> str:
|
||||||
if provider_model_id in self.provider_id_to_llama_model_map:
|
if provider_model_id in self.provider_id_to_llama_model_map:
|
||||||
|
@ -60,8 +60,18 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
async def register_model(self, model: Model) -> Model:
|
async def register_model(self, model: Model) -> Model:
|
||||||
model.provider_resource_id = self.get_provider_model_id(
|
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
|
||||||
model.provider_resource_id
|
if provider_resource_id:
|
||||||
)
|
model.provider_resource_id = provider_resource_id
|
||||||
|
else:
|
||||||
|
if model.metadata.get("llama_model") is None:
|
||||||
|
raise ValueError(
|
||||||
|
f"Model '{model.provider_resource_id}' is not available and no llama_model was specified in metadata. "
|
||||||
|
"Please specify a llama_model in metadata or use a supported model identifier"
|
||||||
|
)
|
||||||
|
# Register the mapping from provider model id to llama model for future lookups
|
||||||
|
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
|
||||||
|
model.metadata["llama_model"]
|
||||||
|
)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue