Merge branch 'main' into update-api-docs

This commit is contained in:
Sai Prashanth S 2025-07-25 09:32:28 -07:00 committed by GitHub
commit cd16c72cdf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
136 changed files with 4279 additions and 1465 deletions

View file

@ -0,0 +1,392 @@
# External APIs
Llama Stack supports external APIs that live outside of the main codebase. This allows you to:
- Create and maintain your own APIs independently
- Share APIs with others without contributing to the main codebase
- Keep API-specific code separate from the core Llama Stack code
## Configuration
To enable external APIs, you need to configure the `external_apis_dir` in your Llama Stack configuration. This directory should contain your external API specifications:
```yaml
external_apis_dir: ~/.llama/apis.d/
```
## Directory Structure
The external APIs directory should follow this structure:
```
apis.d/
custom_api1.yaml
custom_api2.yaml
```
Each YAML file in these directories defines an API specification.
## API Specification
Here's an example of an external API specification for a weather API:
```yaml
module: weather
api_dependencies:
- inference
protocol: WeatherAPI
name: weather
pip_packages:
- llama-stack-api-weather
```
### API Specification Fields
- `module`: Python module containing the API implementation
- `protocol`: Name of the protocol class for the API
- `name`: Name of the API
- `pip_packages`: List of pip packages to install the API, typically a single package
## Required Implementation
External APIs must expose a `available_providers()` function in their module that returns a list of provider names:
```python
# llama_stack_api_weather/api.py
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.weather,
provider_type="inline::darksky",
pip_packages=[],
module="llama_stack_provider_darksky",
config_class="llama_stack_provider_darksky.DarkSkyWeatherImplConfig",
),
]
```
A Protocol class like so:
```python
# llama_stack_api_weather/api.py
from typing import Protocol
from llama_stack.schema_utils import webmethod
class WeatherAPI(Protocol):
"""
A protocol for the Weather API.
"""
@webmethod(route="/locations", method="GET")
async def get_available_locations() -> dict[str, list[str]]:
"""
Get the available locations.
"""
...
```
## Example: Custom API
Here's a complete example of creating and using a custom API:
1. First, create the API package:
```bash
mkdir -p llama-stack-api-weather
cd llama-stack-api-weather
mkdir src/llama_stack_api_weather
git init
uv init
```
2. Edit `pyproject.toml`:
```toml
[project]
name = "llama-stack-api-weather"
version = "0.1.0"
description = "Weather API for Llama Stack"
readme = "README.md"
requires-python = ">=3.10"
dependencies = ["llama-stack", "pydantic"]
[build-system]
requires = ["setuptools"]
build-backend = "setuptools.build_meta"
[tool.setuptools.packages.find]
where = ["src"]
include = ["llama_stack_api_weather", "llama_stack_api_weather.*"]
```
3. Create the initial files:
```bash
touch src/llama_stack_api_weather/__init__.py
touch src/llama_stack_api_weather/api.py
```
```python
# llama-stack-api-weather/src/llama_stack_api_weather/__init__.py
"""Weather API for Llama Stack."""
from .api import WeatherAPI, available_providers
__all__ = ["WeatherAPI", "available_providers"]
```
4. Create the API implementation:
```python
# llama-stack-api-weather/src/llama_stack_api_weather/weather.py
from typing import Protocol
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
ProviderSpec,
RemoteProviderSpec,
)
from llama_stack.schema_utils import webmethod
def available_providers() -> list[ProviderSpec]:
return [
RemoteProviderSpec(
api=Api.weather,
provider_type="remote::kaze",
config_class="llama_stack_provider_kaze.KazeProviderConfig",
adapter=AdapterSpec(
adapter_type="kaze",
module="llama_stack_provider_kaze",
pip_packages=["llama_stack_provider_kaze"],
config_class="llama_stack_provider_kaze.KazeProviderConfig",
),
),
]
class WeatherProvider(Protocol):
"""
A protocol for the Weather API.
"""
@webmethod(route="/weather/locations", method="GET")
async def get_available_locations() -> dict[str, list[str]]:
"""
Get the available locations.
"""
...
```
5. Create the API specification:
```yaml
# ~/.llama/apis.d/weather.yaml
module: llama_stack_api_weather
name: weather
pip_packages: ["llama-stack-api-weather"]
protocol: WeatherProvider
```
6. Install the API package:
```bash
uv pip install -e .
```
7. Configure Llama Stack to use external APIs:
```yaml
version: "2"
image_name: "llama-stack-api-weather"
apis:
- weather
providers: {}
external_apis_dir: ~/.llama/apis.d
```
The API will now be available at `/v1/weather/locations`.
## Example: custom provider for the weather API
1. Create the provider package:
```bash
mkdir -p llama-stack-provider-kaze
cd llama-stack-provider-kaze
uv init
```
2. Edit `pyproject.toml`:
```toml
[project]
name = "llama-stack-provider-kaze"
version = "0.1.0"
description = "Kaze weather provider for Llama Stack"
readme = "README.md"
requires-python = ">=3.10"
dependencies = ["llama-stack", "pydantic", "aiohttp"]
[build-system]
requires = ["setuptools"]
build-backend = "setuptools.build_meta"
[tool.setuptools.packages.find]
where = ["src"]
include = ["llama_stack_provider_kaze", "llama_stack_provider_kaze.*"]
```
3. Create the initial files:
```bash
touch src/llama_stack_provider_kaze/__init__.py
touch src/llama_stack_provider_kaze/kaze.py
```
4. Create the provider implementation:
Initialization function:
```python
# llama-stack-provider-kaze/src/llama_stack_provider_kaze/__init__.py
"""Kaze weather provider for Llama Stack."""
from .config import KazeProviderConfig
from .kaze import WeatherKazeAdapter
__all__ = ["KazeProviderConfig", "WeatherKazeAdapter"]
async def get_adapter_impl(config: KazeProviderConfig, _deps):
from .kaze import WeatherKazeAdapter
impl = WeatherKazeAdapter(config)
await impl.initialize()
return impl
```
Configuration:
```python
# llama-stack-provider-kaze/src/llama_stack_provider_kaze/config.py
from pydantic import BaseModel, Field
class KazeProviderConfig(BaseModel):
"""Configuration for the Kaze weather provider."""
base_url: str = Field(
"https://api.kaze.io/v1",
description="Base URL for the Kaze weather API",
)
```
Main implementation:
```python
# llama-stack-provider-kaze/src/llama_stack_provider_kaze/kaze.py
from llama_stack_api_weather.api import WeatherProvider
from .config import KazeProviderConfig
class WeatherKazeAdapter(WeatherProvider):
"""Kaze weather provider implementation."""
def __init__(
self,
config: KazeProviderConfig,
) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def get_available_locations(self) -> dict[str, list[str]]:
"""Get available weather locations."""
return {"locations": ["Paris", "Tokyo"]}
```
5. Create the provider specification:
```yaml
# ~/.llama/providers.d/remote/weather/kaze.yaml
adapter:
adapter_type: kaze
pip_packages: ["llama_stack_provider_kaze"]
config_class: llama_stack_provider_kaze.config.KazeProviderConfig
module: llama_stack_provider_kaze
optional_api_dependencies: []
```
6. Install the provider package:
```bash
uv pip install -e .
```
7. Configure Llama Stack to use the provider:
```yaml
# ~/.llama/run-byoa.yaml
version: "2"
image_name: "llama-stack-api-weather"
apis:
- weather
providers:
weather:
- provider_id: kaze
provider_type: remote::kaze
config: {}
external_apis_dir: ~/.llama/apis.d
external_providers_dir: ~/.llama/providers.d
server:
port: 8321
```
8. Run the server:
```bash
python -m llama_stack.distribution.server.server --yaml-config ~/.llama/run-byoa.yaml
```
9. Test the API:
```bash
curl -sSf http://127.0.0.1:8321/v1/weather/locations
{"locations":["Paris","Tokyo"]}%
```
## Best Practices
1. **Package Naming**: Use a clear and descriptive name for your API package.
2. **Version Management**: Keep your API package versioned and compatible with the Llama Stack version you're using.
3. **Dependencies**: Only include the minimum required dependencies in your API package.
4. **Documentation**: Include clear documentation in your API package about:
- Installation requirements
- Configuration options
- API endpoints and usage
- Any limitations or known issues
5. **Testing**: Include tests in your API package to ensure it works correctly with Llama Stack.
## Troubleshooting
If your external API isn't being loaded:
1. Check that the `external_apis_dir` path is correct and accessible.
2. Verify that the YAML files are properly formatted.
3. Ensure all required Python packages are installed.
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more information using `LLAMA_STACK_LOGGING=all=debug`.
5. Verify that the API package is installed in your Python environment.

View file

@ -10,9 +10,11 @@ A Llama Stack API is described as a collection of REST endpoints. We currently s
- **Eval**: generate outputs (via Inference or Agents) and perform scoring
- **VectorIO**: perform operations on vector stores, such as adding documents, searching, and deleting documents
- **Telemetry**: collect telemetry data from the system
- **Post Training**: fine-tune a model
- **Tool Runtime**: interact with various tools and protocols
- **Responses**: generate responses from an LLM using this OpenAI compatible API.
We are working on adding a few more APIs to complete the application lifecycle. These will include:
- **Batch Inference**: run inference on a dataset of inputs
- **Batch Agents**: run agents on a dataset of inputs
- **Post Training**: fine-tune a model
- **Synthetic Data Generation**: generate synthetic data for model development

View file

@ -504,6 +504,47 @@ created by users sharing a team with them:
description: any user has read access to any resource created by a user with the same team
```
#### API Endpoint Authorization with Scopes
In addition to resource-based access control, Llama Stack supports endpoint-level authorization using OAuth 2.0 style scopes. When authentication is enabled, specific API endpoints require users to have particular scopes in their authentication token.
**Scope-Gated APIs:**
The following APIs are currently gated by scopes:
- **Telemetry API** (scope: `telemetry.read`):
- `POST /telemetry/traces` - Query traces
- `GET /telemetry/traces/{trace_id}` - Get trace by ID
- `GET /telemetry/traces/{trace_id}/spans/{span_id}` - Get span by ID
- `POST /telemetry/spans/{span_id}/tree` - Get span tree
- `POST /telemetry/spans` - Query spans
- `POST /telemetry/metrics/{metric_name}` - Query metrics
**Authentication Configuration:**
For **JWT/OAuth2 providers**, scopes should be included in the JWT's claims:
```json
{
"sub": "user123",
"scope": "telemetry.read",
"aud": "llama-stack"
}
```
For **custom authentication providers**, the endpoint must return user attributes including the `scopes` array:
```json
{
"principal": "user123",
"attributes": {
"scopes": ["telemetry.read"]
}
}
```
**Behavior:**
- Users without the required scope receive a 403 Forbidden response
- When authentication is disabled, scope checks are bypassed
- Endpoints without `required_scope` work normally for all authenticated users
### Quota Configuration
The `quota` section allows you to enable server-side request throttling for both

View file

@ -1,3 +1,6 @@
---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# NVIDIA Distribution

View file

@ -7,7 +7,17 @@ Llama Stack supports external providers that live outside of the main codebase.
## Configuration
To enable external providers, you need to configure the `external_providers_dir` in your Llama Stack configuration. This directory should contain your external provider specifications:
To enable external providers, you need to add `module` into your build yaml, allowing Llama Stack to install the required package corresponding to the external provider.
an example entry in your build.yaml should look like:
```
- provider_id: ramalama
provider_type: remote::ramalama
module: ramalama_stack
```
Additionally you can configure the `external_providers_dir` in your Llama Stack configuration. This method is in the process of being deprecated in favor of the `module` method. If using this method, the external provider directory should contain your external provider specifications:
```yaml
external_providers_dir: ~/.llama/providers.d/
@ -112,6 +122,31 @@ container_image: custom-vector-store:latest # optional
## Required Implementation
## All Providers
All providers must contain a `get_provider_spec` function in their `provider` module. This is a standardized structure that Llama Stack expects and is necessary for getting things such as the config class. The `get_provider_spec` method returns a structure identical to the `adapter`. An example function may look like:
```python
from llama_stack.providers.datatypes import (
ProviderSpec,
Api,
AdapterSpec,
remote_provider_spec,
)
def get_provider_spec() -> ProviderSpec:
return remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="ramalama",
pip_packages=["ramalama>=0.8.5", "pymilvus"],
config_class="ramalama_stack.config.RamalamaImplConfig",
module="ramalama_stack",
),
)
```
### Remote Providers
Remote providers must expose a `get_adapter_impl()` function in their module that takes two arguments:
@ -155,7 +190,7 @@ Version: 0.1.0
Location: /path/to/venv/lib/python3.10/site-packages
```
## Example: Custom Ollama Provider
## Example using `external_providers_dir`: Custom Ollama Provider
Here's a complete example of creating and using a custom Ollama provider:
@ -206,6 +241,35 @@ external_providers_dir: ~/.llama/providers.d/
The provider will now be available in Llama Stack with the type `remote::custom_ollama`.
## Example using `module`: ramalama-stack
[ramalama-stack](https://github.com/containers/ramalama-stack) is a recognized external provider that supports installation via module.
To install Llama Stack with this external provider a user can provider the following build.yaml:
```yaml
version: 2
distribution_spec:
description: Use (an external) Ramalama server for running LLM inference
container_image: null
providers:
inference:
- provider_id: ramalama
provider_type: remote::ramalama
module: ramalama_stack==0.3.0a0
image_type: venv
image_name: null
external_providers_dir: null
additional_pip_packages:
- aiosqlite
- sqlalchemy[asyncio]
```
No other steps are required other than `llama stack build` and `llama stack run`. The build process will use `module` to install all of the provider dependencies, retrieve the spec, etc.
The provider will now be available in Llama Stack with the type `remote::ramalama`.
## Best Practices
1. **Package Naming**: Use the prefix `llama-stack-provider-` for your provider packages to make them easily identifiable.
@ -229,9 +293,10 @@ information. Execute the test for the Provider type you are developing.
If your external provider isn't being loaded:
1. Check that `module` points to a published pip package with a top level `provider` module including `get_provider_spec`.
1. Check that the `external_providers_dir` path is correct and accessible.
2. Verify that the YAML files are properly formatted.
3. Ensure all required Python packages are installed.
4. Check the Llama Stack server logs for any error messages - turn on debug logging to get more
information using `LLAMA_STACK_LOGGING=all=debug`.
5. Verify that the provider package is installed in your Python environment.
5. Verify that the provider package is installed in your Python environment if using `external_providers_dir`.

View file

@ -8,6 +8,7 @@ Fireworks AI inference provider for Llama models and other AI models on the Fire
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `url` | `<class 'str'>` | No | https://api.fireworks.ai/inference/v1 | The URL for the Fireworks server |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Fireworks.ai API Key |

View file

@ -9,8 +9,7 @@ Ollama inference provider for running local models through the Ollama runtime.
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `url` | `<class 'str'>` | No | http://localhost:11434 | |
| `refresh_models` | `<class 'bool'>` | No | False | refresh and re-register models periodically |
| `refresh_models_interval` | `<class 'int'>` | No | 300 | interval in seconds to refresh models |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically |
## Sample Configuration

View file

@ -8,6 +8,7 @@ Together AI inference provider for open-source models and collaborative AI devel
| Field | Type | Required | Default | Description |
|-------|------|----------|---------|-------------|
| `allowed_models` | `list[str \| None` | No | | List of models that should be registered with the model registry. If None, all models are allowed. |
| `url` | `<class 'str'>` | No | https://api.together.xyz/v1 | The URL for the Together AI server |
| `api_key` | `pydantic.types.SecretStr \| None` | No | | The Together AI API Key |

View file

@ -13,7 +13,6 @@ Remote vLLM inference provider for connecting to vLLM servers.
| `api_token` | `str \| None` | No | fake | The API token |
| `tls_verify` | `bool \| str` | No | True | Whether to verify TLS certificates. Can be a boolean or a path to a CA certificate file. |
| `refresh_models` | `<class 'bool'>` | No | False | Whether to refresh models periodically |
| `refresh_models_interval` | `<class 'int'>` | No | 300 | Interval in seconds to refresh models |
## Sample Configuration