chore: standardize vector store not found error (#2968)

# What does this PR do?
1. Creates a new `VectorStoreNotFoundError` class
2. Implements the new class where appropriate 

Relates to #2379

Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
This commit is contained in:
Nathan Weinberg 2025-07-30 18:19:16 -04:00 committed by GitHub
parent 272a3e9937
commit cd5c6a2fcd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 46 additions and 31 deletions

View file

@ -26,6 +26,14 @@ class ModelNotFoundError(ValueError):
super().__init__(message) super().__init__(message)
class VectorStoreNotFoundError(ValueError):
"""raised when Llama Stack cannot find a referenced vector store"""
def __init__(self, vector_store_name: str) -> None:
message = f"Vector store '{vector_store_name}' not found. Use client.vector_dbs.list() to list available vector stores."
super().__init__(message)
class DatasetNotFoundError(ValueError): class DatasetNotFoundError(ValueError):
"""raised when Llama Stack cannot find a referenced dataset""" """raised when Llama Stack cannot find a referenced dataset"""

View file

@ -8,7 +8,7 @@ from typing import Any
from pydantic import TypeAdapter from pydantic import TypeAdapter
from llama_stack.apis.common.errors import ModelNotFoundError from llama_stack.apis.common.errors import ModelNotFoundError, VectorStoreNotFoundError
from llama_stack.apis.models import ModelType from llama_stack.apis.models import ModelType
from llama_stack.apis.resource import ResourceType from llama_stack.apis.resource import ResourceType
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB, VectorDBs
@ -40,7 +40,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
async def get_vector_db(self, vector_db_id: str) -> VectorDB: async def get_vector_db(self, vector_db_id: str) -> VectorDB:
vector_db = await self.get_object_by_identifier("vector_db", vector_db_id) vector_db = await self.get_object_by_identifier("vector_db", vector_db_id)
if vector_db is None: if vector_db is None:
raise ValueError(f"Vector DB '{vector_db_id}' not found") raise VectorStoreNotFoundError(vector_db_id)
return vector_db return vector_db
async def register_vector_db( async def register_vector_db(
@ -85,7 +85,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl, VectorDBs):
async def unregister_vector_db(self, vector_db_id: str) -> None: async def unregister_vector_db(self, vector_db_id: str) -> None:
existing_vector_db = await self.get_vector_db(vector_db_id) existing_vector_db = await self.get_vector_db(vector_db_id)
if existing_vector_db is None: if existing_vector_db is None:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
await self.unregister_object(existing_vector_db) await self.unregister_object(existing_vector_db)
async def openai_retrieve_vector_store( async def openai_retrieve_vector_store(

View file

@ -15,6 +15,7 @@ import faiss
import numpy as np import numpy as np
from numpy.typing import NDArray from numpy.typing import NDArray
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference, InterleavedContent from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
@ -285,7 +286,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr
) -> QueryChunksResponse: ) -> QueryChunksResponse:
index = self.cache.get(vector_db_id) index = self.cache.get(vector_db_id)
if index is None: if index is None:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params) return await index.query_chunks(query, params)

View file

@ -15,6 +15,7 @@ import numpy as np
import sqlite_vec import sqlite_vec
from numpy.typing import NDArray from numpy.typing import NDArray
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files from llama_stack.apis.files import Files
from llama_stack.apis.inference import Inference from llama_stack.apis.inference import Inference
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
@ -508,11 +509,11 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
return self.cache[vector_db_id] return self.cache[vector_db_id]
if self.vector_db_store is None: if self.vector_db_store is None:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
vector_db = self.vector_db_store.get_vector_db(vector_db_id) vector_db = self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db: if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
index = VectorDBWithIndex( index = VectorDBWithIndex(
vector_db=vector_db, vector_db=vector_db,
@ -537,7 +538,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
# The VectorDBWithIndex helper is expected to compute embeddings via the inference_api # The VectorDBWithIndex helper is expected to compute embeddings via the inference_api
# and then call our index's add_chunks. # and then call our index's add_chunks.
await index.insert_chunks(chunks) await index.insert_chunks(chunks)
@ -547,14 +548,14 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc
) -> QueryChunksResponse: ) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params) return await index.query_chunks(query, params)
async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None: async def delete_chunks(self, store_id: str, chunk_ids: list[str]) -> None:
"""Delete a chunk from a sqlite_vec index.""" """Delete a chunk from a sqlite_vec index."""
index = await self._get_and_cache_vector_db_index(store_id) index = await self._get_and_cache_vector_db_index(store_id)
if not index: if not index:
raise ValueError(f"Vector DB {store_id} not found") raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids: for chunk_id in chunk_ids:
# Use the index's delete_chunk method # Use the index's delete_chunk method

View file

@ -13,6 +13,7 @@ from typing import Any
from numpy.typing import NDArray from numpy.typing import NDArray
from pymilvus import DataType, Function, FunctionType, MilvusClient from pymilvus import DataType, Function, FunctionType, MilvusClient
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files.files import Files from llama_stack.apis.files.files import Files
from llama_stack.apis.inference import Inference, InterleavedContent from llama_stack.apis.inference import Inference, InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
@ -329,11 +330,11 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
return self.cache[vector_db_id] return self.cache[vector_db_id]
if self.vector_db_store is None: if self.vector_db_store is None:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
vector_db = await self.vector_db_store.get_vector_db(vector_db_id) vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db: if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
index = VectorDBWithIndex( index = VectorDBWithIndex(
vector_db=vector_db, vector_db=vector_db,
@ -356,7 +357,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
) -> None: ) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
await index.insert_chunks(chunks) await index.insert_chunks(chunks)
@ -368,7 +369,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
) -> QueryChunksResponse: ) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
if params and params.get("mode") == "keyword": if params and params.get("mode") == "keyword":
# Check if this is inline Milvus (Milvus-Lite) # Check if this is inline Milvus (Milvus-Lite)
@ -384,7 +385,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP
"""Delete a chunk from a milvus vector store.""" """Delete a chunk from a milvus vector store."""
index = await self._get_and_cache_vector_db_index(store_id) index = await self._get_and_cache_vector_db_index(store_id)
if not index: if not index:
raise ValueError(f"Vector DB {store_id} not found") raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids: for chunk_id in chunk_ids:
# Use the index's delete_chunk method # Use the index's delete_chunk method

View file

@ -13,6 +13,7 @@ from psycopg2 import sql
from psycopg2.extras import Json, execute_values from psycopg2.extras import Json, execute_values
from pydantic import BaseModel, TypeAdapter from pydantic import BaseModel, TypeAdapter
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files.files import Files from llama_stack.apis.files.files import Files
from llama_stack.apis.inference import InterleavedContent from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
@ -275,7 +276,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco
"""Delete a chunk from a PostgreSQL vector store.""" """Delete a chunk from a PostgreSQL vector store."""
index = await self._get_and_cache_vector_db_index(store_id) index = await self._get_and_cache_vector_db_index(store_id)
if not index: if not index:
raise ValueError(f"Vector DB {store_id} not found") raise VectorStoreNotFoundError(store_id)
for chunk_id in chunk_ids: for chunk_id in chunk_ids:
# Use the index's delete_chunk method # Use the index's delete_chunk method

View file

@ -12,6 +12,7 @@ from numpy.typing import NDArray
from qdrant_client import AsyncQdrantClient, models from qdrant_client import AsyncQdrantClient, models
from qdrant_client.models import PointStruct from qdrant_client.models import PointStruct
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.inference import InterleavedContent from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import ( from llama_stack.apis.vector_io import (
@ -173,7 +174,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
vector_db = await self.vector_db_store.get_vector_db(vector_db_id) vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db: if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
index = VectorDBWithIndex( index = VectorDBWithIndex(
vector_db=vector_db, vector_db=vector_db,
@ -191,7 +192,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
) -> None: ) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
await index.insert_chunks(chunks) await index.insert_chunks(chunks)
@ -203,7 +204,7 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
) -> QueryChunksResponse: ) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params) return await index.query_chunks(query, params)

View file

@ -14,6 +14,7 @@ from weaviate.classes.init import Auth
from weaviate.classes.query import Filter from weaviate.classes.query import Filter
from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files.files import Files from llama_stack.apis.files.files import Files
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
@ -212,7 +213,7 @@ class WeaviateVectorIOAdapter(
vector_db = await self.vector_db_store.get_vector_db(vector_db_id) vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
if not vector_db: if not vector_db:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
client = self._get_client() client = self._get_client()
if not client.collections.exists(vector_db.identifier): if not client.collections.exists(vector_db.identifier):
@ -234,7 +235,7 @@ class WeaviateVectorIOAdapter(
) -> None: ) -> None:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
await index.insert_chunks(chunks) await index.insert_chunks(chunks)
@ -246,7 +247,7 @@ class WeaviateVectorIOAdapter(
) -> QueryChunksResponse: ) -> QueryChunksResponse:
index = await self._get_and_cache_vector_db_index(vector_db_id) index = await self._get_and_cache_vector_db_index(vector_db_id)
if not index: if not index:
raise ValueError(f"Vector DB {vector_db_id} not found") raise VectorStoreNotFoundError(vector_db_id)
return await index.query_chunks(query, params) return await index.query_chunks(query, params)

View file

@ -13,6 +13,7 @@ import uuid
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Any from typing import Any
from llama_stack.apis.common.errors import VectorStoreNotFoundError
from llama_stack.apis.files import Files, OpenAIFileObject from llama_stack.apis.files import Files, OpenAIFileObject
from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import ( from llama_stack.apis.vector_io import (
@ -322,7 +323,7 @@ class OpenAIVectorStoreMixin(ABC):
) -> VectorStoreObject: ) -> VectorStoreObject:
"""Retrieves a vector store.""" """Retrieves a vector store."""
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
store_info = self.openai_vector_stores[vector_store_id] store_info = self.openai_vector_stores[vector_store_id]
return VectorStoreObject(**store_info) return VectorStoreObject(**store_info)
@ -336,7 +337,7 @@ class OpenAIVectorStoreMixin(ABC):
) -> VectorStoreObject: ) -> VectorStoreObject:
"""Modifies a vector store.""" """Modifies a vector store."""
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
store_info = self.openai_vector_stores[vector_store_id].copy() store_info = self.openai_vector_stores[vector_store_id].copy()
@ -365,7 +366,7 @@ class OpenAIVectorStoreMixin(ABC):
) -> VectorStoreDeleteResponse: ) -> VectorStoreDeleteResponse:
"""Delete a vector store.""" """Delete a vector store."""
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
# Delete from persistent storage (provider-specific) # Delete from persistent storage (provider-specific)
await self._delete_openai_vector_store_from_storage(vector_store_id) await self._delete_openai_vector_store_from_storage(vector_store_id)
@ -403,7 +404,7 @@ class OpenAIVectorStoreMixin(ABC):
raise ValueError(f"search_mode must be one of {valid_modes}, got {search_mode}") raise ValueError(f"search_mode must be one of {valid_modes}, got {search_mode}")
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
if isinstance(query, list): if isinstance(query, list):
search_query = " ".join(query) search_query = " ".join(query)
@ -556,7 +557,7 @@ class OpenAIVectorStoreMixin(ABC):
chunking_strategy: VectorStoreChunkingStrategy | None = None, chunking_strategy: VectorStoreChunkingStrategy | None = None,
) -> VectorStoreFileObject: ) -> VectorStoreFileObject:
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
attributes = attributes or {} attributes = attributes or {}
chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto() chunking_strategy = chunking_strategy or VectorStoreChunkingStrategyAuto()
@ -661,7 +662,7 @@ class OpenAIVectorStoreMixin(ABC):
order = order or "desc" order = order or "desc"
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
store_info = self.openai_vector_stores[vector_store_id] store_info = self.openai_vector_stores[vector_store_id]
@ -709,7 +710,7 @@ class OpenAIVectorStoreMixin(ABC):
) -> VectorStoreFileObject: ) -> VectorStoreFileObject:
"""Retrieves a vector store file.""" """Retrieves a vector store file."""
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
store_info = self.openai_vector_stores[vector_store_id] store_info = self.openai_vector_stores[vector_store_id]
if file_id not in store_info["file_ids"]: if file_id not in store_info["file_ids"]:
@ -725,7 +726,7 @@ class OpenAIVectorStoreMixin(ABC):
) -> VectorStoreFileContentsResponse: ) -> VectorStoreFileContentsResponse:
"""Retrieves the contents of a vector store file.""" """Retrieves the contents of a vector store file."""
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id) file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id) dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
@ -748,7 +749,7 @@ class OpenAIVectorStoreMixin(ABC):
) -> VectorStoreFileObject: ) -> VectorStoreFileObject:
"""Updates a vector store file.""" """Updates a vector store file."""
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
store_info = self.openai_vector_stores[vector_store_id] store_info = self.openai_vector_stores[vector_store_id]
if file_id not in store_info["file_ids"]: if file_id not in store_info["file_ids"]:
@ -766,7 +767,7 @@ class OpenAIVectorStoreMixin(ABC):
) -> VectorStoreFileDeleteResponse: ) -> VectorStoreFileDeleteResponse:
"""Deletes a vector store file.""" """Deletes a vector store file."""
if vector_store_id not in self.openai_vector_stores: if vector_store_id not in self.openai_vector_stores:
raise ValueError(f"Vector store {vector_store_id} not found") raise VectorStoreNotFoundError(vector_store_id)
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id) dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
chunks = [Chunk.model_validate(c) for c in dict_chunks] chunks = [Chunk.model_validate(c) for c in dict_chunks]