mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-26 06:07:43 +00:00
chore: Added openai compatible vector io endpoints for chromadb (#2489)
Some checks failed
Integration Tests / discover-tests (push) Successful in 3s
Coverage Badge / unit-tests (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.13) (push) Failing after 2s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 10s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 16s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 16s
Python Package Build Test / build (3.12) (push) Failing after 12s
Test External Providers / test-external-providers (venv) (push) Failing after 12s
Update ReadTheDocs / update-readthedocs (push) Failing after 10s
Test Llama Stack Build / build-single-provider (push) Failing after 15s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 20s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Test Llama Stack Build / build (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 18s
Unit Tests / unit-tests (3.12) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 18s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 49s
Integration Tests / test-matrix (push) Failing after 53s
Pre-commit / pre-commit (push) Successful in 1m42s
Some checks failed
Integration Tests / discover-tests (push) Successful in 3s
Coverage Badge / unit-tests (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.13) (push) Failing after 2s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 10s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 16s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 16s
Python Package Build Test / build (3.12) (push) Failing after 12s
Test External Providers / test-external-providers (venv) (push) Failing after 12s
Update ReadTheDocs / update-readthedocs (push) Failing after 10s
Test Llama Stack Build / build-single-provider (push) Failing after 15s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 20s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Test Llama Stack Build / build (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 18s
Unit Tests / unit-tests (3.12) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 18s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 49s
Integration Tests / test-matrix (push) Failing after 53s
Pre-commit / pre-commit (push) Successful in 1m42s
# What does this PR do? This PR implements the openai compatible endpoints for chromadb Closes #2462 ## Test Plan Ran ollama llama stack server and ran the command `pytest -sv --stack-config=http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2` 8 failed, 27 passed, 8 skipped, 1 xfailed The failed ones are regarding files api --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: sarthakdeshpande <sarthak.deshpande@engati.com> Co-authored-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
This commit is contained in:
parent
fd2aab8582
commit
cd8715d327
18 changed files with 670 additions and 142 deletions
|
@ -16,6 +16,6 @@ async def get_provider_impl(config: ChromaVectorIOConfig, deps: dict[Api, Any]):
|
|||
ChromaVectorIOAdapter,
|
||||
)
|
||||
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -6,12 +6,25 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChromaVectorIOConfig(BaseModel):
|
||||
db_path: str
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, db_path: str = "${env.CHROMADB_PATH}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {"db_path": db_path}
|
||||
def sample_run_config(
|
||||
cls, __distro_dir__: str, db_path: str = "${env.CHROMADB_PATH}", **kwargs: Any
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
"db_path": db_path,
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="chroma_inline_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
|
@ -12,6 +12,6 @@ from .config import ChromaVectorIOConfig
|
|||
async def get_adapter_impl(config: ChromaVectorIOConfig, deps: dict[Api, ProviderSpec]):
|
||||
from .chroma import ChromaVectorIOAdapter
|
||||
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files))
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -12,25 +12,19 @@ from urllib.parse import urlparse
|
|||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
QueryChunksResponse,
|
||||
SearchRankingOptions,
|
||||
VectorIO,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFileStatus,
|
||||
VectorStoreListFilesResponse,
|
||||
VectorStoreListResponse,
|
||||
VectorStoreObject,
|
||||
VectorStoreSearchResponsePage,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from llama_stack.providers.utils.kvstore.api import KVStore
|
||||
from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
|
@ -42,6 +36,13 @@ log = logging.getLogger(__name__)
|
|||
|
||||
ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI
|
||||
|
||||
VERSION = "v3"
|
||||
VECTOR_DBS_PREFIX = f"vector_dbs:chroma:{VERSION}::"
|
||||
VECTOR_INDEX_PREFIX = f"vector_index:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:chroma:{VERSION}::"
|
||||
OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:chroma:{VERSION}::"
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
async def maybe_await(result):
|
||||
|
@ -51,9 +52,10 @@ async def maybe_await(result):
|
|||
|
||||
|
||||
class ChromaIndex(EmbeddingIndex):
|
||||
def __init__(self, client: ChromaClientType, collection):
|
||||
def __init__(self, client: ChromaClientType, collection, kvstore: KVStore | None = None):
|
||||
self.client = client
|
||||
self.collection = collection
|
||||
self.kvstore = kvstore
|
||||
|
||||
async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
|
@ -122,24 +124,23 @@ class ChromaIndex(EmbeddingIndex):
|
|||
raise NotImplementedError("Hybrid search is not supported in Chroma")
|
||||
|
||||
|
||||
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig,
|
||||
inference_api: Api.inference,
|
||||
files_api: Files | None,
|
||||
) -> None:
|
||||
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
||||
self.client = None
|
||||
self.cache = {}
|
||||
self.kvstore: KVStore | None = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
if isinstance(self.config, RemoteChromaVectorIOConfig):
|
||||
if not self.config.url:
|
||||
raise ValueError("URL is a required parameter for the remote Chroma provider's config")
|
||||
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
url = self.config.url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
@ -151,6 +152,7 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
else:
|
||||
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
||||
self.openai_vector_stores = await self._load_openai_vector_stores()
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
@ -206,107 +208,3 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
index = VectorDBWithIndex(vector_db, ChromaIndex(self.client, collection), self.inference_api)
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def openai_create_vector_store(
|
||||
self,
|
||||
name: str,
|
||||
file_ids: list[str] | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
chunking_strategy: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
embedding_model: str | None = None,
|
||||
embedding_dimension: int | None = 384,
|
||||
provider_id: str | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_list_vector_stores(
|
||||
self,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
) -> VectorStoreListResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_retrieve_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_update_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
name: str | None = None,
|
||||
expires_after: dict[str, Any] | None = None,
|
||||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_delete_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
) -> VectorStoreDeleteResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_search_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
query: str | list[str],
|
||||
filters: dict[str, Any] | None = None,
|
||||
max_num_results: int | None = 10,
|
||||
ranking_options: SearchRankingOptions | None = None,
|
||||
rewrite_query: bool | None = False,
|
||||
search_mode: str | None = "vector",
|
||||
) -> VectorStoreSearchResponsePage:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
chunking_strategy: VectorStoreChunkingStrategy | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_list_files_in_vector_store(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
limit: int | None = 20,
|
||||
order: str | None = "desc",
|
||||
after: str | None = None,
|
||||
before: str | None = None,
|
||||
filter: VectorStoreFileStatus | None = None,
|
||||
) -> VectorStoreListFilesResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_retrieve_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_retrieve_vector_store_file_contents(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
attributes: dict[str, Any] | None = None,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
||||
async def openai_delete_vector_store_file(
|
||||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileObject:
|
||||
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")
|
||||
|
|
|
@ -6,12 +6,23 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChromaVectorIOConfig(BaseModel):
|
||||
url: str | None
|
||||
kvstore: KVStoreConfig = Field(description="Config for KV store backend")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {"url": url}
|
||||
def sample_run_config(cls, __distro_dir__: str, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]:
|
||||
return {
|
||||
"url": url,
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="chroma_remote_registry.db",
|
||||
),
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue