mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-29 11:24:19 +00:00
Enable vision models for (Together, Fireworks, Meta-Reference, Ollama) (#376)
* Enable vision models for Together and Fireworks * Works with ollama 0.4.0 pre-release with the vision model * localize media for meta_reference inference * Fix
This commit is contained in:
parent
db30809141
commit
cde9bc1388
11 changed files with 465 additions and 81 deletions
|
@ -29,6 +29,8 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
convert_image_media_to_url,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
OLLAMA_SUPPORTED_MODELS = {
|
||||
|
@ -38,6 +40,7 @@ OLLAMA_SUPPORTED_MODELS = {
|
|||
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
|
||||
"Llama-Guard-3-8B": "llama-guard3:8b",
|
||||
"Llama-Guard-3-1B": "llama-guard3:1b",
|
||||
"Llama3.2-11B-Vision-Instruct": "x/llama3.2-vision:11b-instruct-fp16",
|
||||
}
|
||||
|
||||
|
||||
|
@ -109,22 +112,8 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
if sampling_options["max_tokens"] is not None:
|
||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||
return {
|
||||
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
||||
"prompt": completion_request_to_prompt(request, self.formatter),
|
||||
"options": sampling_options,
|
||||
"raw": True,
|
||||
"stream": request.stream,
|
||||
}
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.generate(**params)
|
||||
|
@ -142,7 +131,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.generate(**params)
|
||||
assert isinstance(r, dict)
|
||||
|
||||
|
@ -183,26 +172,66 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||
) -> dict:
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
if sampling_options.get("max_tokens") is not None:
|
||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
if media_present:
|
||||
contents = [
|
||||
await convert_message_to_dict_for_ollama(m)
|
||||
for m in request.messages
|
||||
]
|
||||
# flatten the list of lists
|
||||
input_dict["messages"] = [
|
||||
item for sublist in contents for item in sublist
|
||||
]
|
||||
else:
|
||||
input_dict["raw"] = True
|
||||
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||
request, self.formatter
|
||||
)
|
||||
else:
|
||||
assert (
|
||||
not media_present
|
||||
), "Ollama does not support media for Completion requests"
|
||||
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||
input_dict["raw"] = True
|
||||
|
||||
return {
|
||||
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
||||
"options": get_sampling_options(request.sampling_params),
|
||||
"raw": True,
|
||||
**input_dict,
|
||||
"options": sampling_options,
|
||||
"stream": request.stream,
|
||||
}
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = await self.client.generate(**params)
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await self.client.chat(**params)
|
||||
else:
|
||||
r = await self.client.generate(**params)
|
||||
assert isinstance(r, dict)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["response"],
|
||||
)
|
||||
if "message" in r:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["message"]["content"],
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["response"],
|
||||
)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
@ -211,15 +240,24 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.generate(**params)
|
||||
if "messages" in params:
|
||||
s = await self.client.chat(**params)
|
||||
else:
|
||||
s = await self.client.generate(**params)
|
||||
async for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["response"],
|
||||
)
|
||||
if "message" in chunk:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["message"]["content"],
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["response"],
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
@ -236,3 +274,26 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
async def convert_message_to_dict_for_ollama(message: Message) -> List[dict]:
|
||||
async def _convert_content(content) -> dict:
|
||||
if isinstance(content, ImageMedia):
|
||||
return {
|
||||
"role": message.role,
|
||||
"images": [
|
||||
await convert_image_media_to_url(
|
||||
content, download=True, include_format=False
|
||||
)
|
||||
],
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"role": message.role,
|
||||
"content": content,
|
||||
}
|
||||
|
||||
if isinstance(message.content, list):
|
||||
return [await _convert_content(c) for c in message.content]
|
||||
else:
|
||||
return [await _convert_content(message.content)]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue