fix(mypy-cleanup): part-01 resolve meta reference agent type issues (126 errors) (#3945)

Error fixes in Agents implementation (`meta-reference` provider) --
adding proper type annotations and using type narrowing for optional
attributes. Essentially a bunch of `if x and x_foo := getattr(x, "foo")`
instead of `x.foo` directly

Part of ongoing mypy remediation effort.

---------

Co-authored-by: Claude <noreply@anthropic.com>
This commit is contained in:
Ashwin Bharambe 2025-10-29 07:54:30 -07:00 committed by GitHub
parent 22bf0d0471
commit ce31aa1704
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 204 additions and 143 deletions

View file

@ -11,6 +11,7 @@ import uuid
import warnings
from collections.abc import AsyncGenerator
from datetime import UTC, datetime
from typing import Any
import httpx
@ -125,12 +126,12 @@ class ChatAgent(ShieldRunnerMixin):
)
def turn_to_messages(self, turn: Turn) -> list[Message]:
messages = []
messages: list[Message] = []
# NOTE: if a toolcall response is in a step, we do not add it when processing the input messages
tool_call_ids = set()
for step in turn.steps:
if step.step_type == StepType.tool_execution.value:
if step.step_type == StepType.tool_execution.value and isinstance(step, ToolExecutionStep):
for response in step.tool_responses:
tool_call_ids.add(response.call_id)
@ -149,9 +150,9 @@ class ChatAgent(ShieldRunnerMixin):
messages.append(msg)
for step in turn.steps:
if step.step_type == StepType.inference.value:
if step.step_type == StepType.inference.value and isinstance(step, InferenceStep):
messages.append(step.model_response)
elif step.step_type == StepType.tool_execution.value:
elif step.step_type == StepType.tool_execution.value and isinstance(step, ToolExecutionStep):
for response in step.tool_responses:
messages.append(
ToolResponseMessage(
@ -159,8 +160,8 @@ class ChatAgent(ShieldRunnerMixin):
content=response.content,
)
)
elif step.step_type == StepType.shield_call.value:
if step.violation:
elif step.step_type == StepType.shield_call.value and isinstance(step, ShieldCallStep):
if step.violation and step.violation.user_message:
# CompletionMessage itself in the ShieldResponse
messages.append(
CompletionMessage(
@ -174,7 +175,7 @@ class ChatAgent(ShieldRunnerMixin):
return await self.storage.create_session(name)
async def get_messages_from_turns(self, turns: list[Turn]) -> list[Message]:
messages = []
messages: list[Message] = []
if self.agent_config.instructions != "":
messages.append(SystemMessage(content=self.agent_config.instructions))
@ -231,7 +232,9 @@ class ChatAgent(ShieldRunnerMixin):
steps = []
messages = await self.get_messages_from_turns(turns)
if is_resume:
assert isinstance(request, AgentTurnResumeRequest)
tool_response_messages = [
ToolResponseMessage(call_id=x.call_id, content=x.content) for x in request.tool_responses
]
@ -252,42 +255,52 @@ class ChatAgent(ShieldRunnerMixin):
in_progress_tool_call_step = await self.storage.get_in_progress_tool_call_step(
request.session_id, request.turn_id
)
now = datetime.now(UTC).isoformat()
now_dt = datetime.now(UTC)
tool_execution_step = ToolExecutionStep(
step_id=(in_progress_tool_call_step.step_id if in_progress_tool_call_step else str(uuid.uuid4())),
turn_id=request.turn_id,
tool_calls=(in_progress_tool_call_step.tool_calls if in_progress_tool_call_step else []),
tool_responses=request.tool_responses,
completed_at=now,
started_at=(in_progress_tool_call_step.started_at if in_progress_tool_call_step else now),
completed_at=now_dt,
started_at=(in_progress_tool_call_step.started_at if in_progress_tool_call_step else now_dt),
)
steps.append(tool_execution_step)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.tool_execution.value,
step_type=StepType.tool_execution,
step_id=tool_execution_step.step_id,
step_details=tool_execution_step,
)
)
)
input_messages = last_turn.input_messages
# Cast needed due to list invariance - last_turn.input_messages is the right type
input_messages = last_turn.input_messages # type: ignore[assignment]
turn_id = request.turn_id
actual_turn_id = request.turn_id
start_time = last_turn.started_at
else:
assert isinstance(request, AgentTurnCreateRequest)
messages.extend(request.messages)
start_time = datetime.now(UTC).isoformat()
input_messages = request.messages
start_time = datetime.now(UTC)
# Cast needed due to list invariance - request.messages is the right type
input_messages = request.messages # type: ignore[assignment]
# Use the generated turn_id from beginning of function
actual_turn_id = turn_id if turn_id else str(uuid.uuid4())
output_message = None
req_documents = request.documents if isinstance(request, AgentTurnCreateRequest) and not is_resume else None
req_sampling = (
self.agent_config.sampling_params if self.agent_config.sampling_params is not None else SamplingParams()
)
async for chunk in self.run(
session_id=request.session_id,
turn_id=turn_id,
turn_id=actual_turn_id,
input_messages=messages,
sampling_params=self.agent_config.sampling_params,
sampling_params=req_sampling,
stream=request.stream,
documents=request.documents if not is_resume else None,
documents=req_documents,
):
if isinstance(chunk, CompletionMessage):
output_message = chunk
@ -295,20 +308,23 @@ class ChatAgent(ShieldRunnerMixin):
assert isinstance(chunk, AgentTurnResponseStreamChunk), f"Unexpected type {type(chunk)}"
event = chunk.event
if event.payload.event_type == AgentTurnResponseEventType.step_complete.value:
steps.append(event.payload.step_details)
if event.payload.event_type == AgentTurnResponseEventType.step_complete.value and hasattr(
event.payload, "step_details"
):
step_details = event.payload.step_details
steps.append(step_details)
yield chunk
assert output_message is not None
turn = Turn(
turn_id=turn_id,
turn_id=actual_turn_id,
session_id=request.session_id,
input_messages=input_messages,
input_messages=input_messages, # type: ignore[arg-type]
output_message=output_message,
started_at=start_time,
completed_at=datetime.now(UTC).isoformat(),
completed_at=datetime.now(UTC),
steps=steps,
)
await self.storage.add_turn_to_session(request.session_id, turn)
@ -345,7 +361,7 @@ class ChatAgent(ShieldRunnerMixin):
# return a "final value" for the `yield from` statement. we simulate that by yielding a
# final boolean (to see whether an exception happened) and then explicitly testing for it.
if len(self.input_shields) > 0:
if self.input_shields:
async for res in self.run_multiple_shields_wrapper(
turn_id, input_messages, self.input_shields, "user-input"
):
@ -374,7 +390,7 @@ class ChatAgent(ShieldRunnerMixin):
# for output shields run on the full input and output combination
messages = input_messages + [final_response]
if len(self.output_shields) > 0:
if self.output_shields:
async for res in self.run_multiple_shields_wrapper(
turn_id, messages, self.output_shields, "assistant-output"
):
@ -402,12 +418,12 @@ class ChatAgent(ShieldRunnerMixin):
return
step_id = str(uuid.uuid4())
shield_call_start_time = datetime.now(UTC).isoformat()
shield_call_start_time = datetime.now(UTC)
try:
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.shield_call.value,
step_type=StepType.shield_call,
step_id=step_id,
metadata=dict(touchpoint=touchpoint),
)
@ -419,14 +435,14 @@ class ChatAgent(ShieldRunnerMixin):
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.shield_call.value,
step_type=StepType.shield_call,
step_id=step_id,
step_details=ShieldCallStep(
step_id=step_id,
turn_id=turn_id,
violation=e.violation,
started_at=shield_call_start_time,
completed_at=datetime.now(UTC).isoformat(),
completed_at=datetime.now(UTC),
),
)
)
@ -443,14 +459,14 @@ class ChatAgent(ShieldRunnerMixin):
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.shield_call.value,
step_type=StepType.shield_call,
step_id=step_id,
step_details=ShieldCallStep(
step_id=step_id,
turn_id=turn_id,
violation=None,
started_at=shield_call_start_time,
completed_at=datetime.now(UTC).isoformat(),
completed_at=datetime.now(UTC),
),
)
)
@ -496,21 +512,22 @@ class ChatAgent(ShieldRunnerMixin):
else:
self.tool_name_to_args[tool_name]["vector_store_ids"].append(session_info.vector_store_id)
output_attachments = []
output_attachments: list[Attachment] = []
n_iter = await self.storage.get_num_infer_iters_in_turn(session_id, turn_id) or 0
# Build a map of custom tools to their definitions for faster lookup
client_tools = {}
for tool in self.agent_config.client_tools:
client_tools[tool.name] = tool
if self.agent_config.client_tools:
for tool in self.agent_config.client_tools:
client_tools[tool.name] = tool
while True:
step_id = str(uuid.uuid4())
inference_start_time = datetime.now(UTC).isoformat()
inference_start_time = datetime.now(UTC)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.inference.value,
step_type=StepType.inference,
step_id=step_id,
)
)
@ -538,7 +555,7 @@ class ChatAgent(ShieldRunnerMixin):
else:
return value
def _add_type(openai_msg: dict) -> OpenAIMessageParam:
def _add_type(openai_msg: Any) -> OpenAIMessageParam:
# Serialize any nested Pydantic models to plain dicts
openai_msg = _serialize_nested(openai_msg)
@ -588,7 +605,7 @@ class ChatAgent(ShieldRunnerMixin):
messages=openai_messages,
tools=openai_tools if openai_tools else None,
tool_choice=tool_choice,
response_format=self.agent_config.response_format,
response_format=self.agent_config.response_format, # type: ignore[arg-type]
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
@ -598,7 +615,8 @@ class ChatAgent(ShieldRunnerMixin):
# Convert OpenAI stream back to Llama Stack format
response_stream = convert_openai_chat_completion_stream(
openai_stream, enable_incremental_tool_calls=True
openai_stream, # type: ignore[arg-type]
enable_incremental_tool_calls=True,
)
async for chunk in response_stream:
@ -620,7 +638,7 @@ class ChatAgent(ShieldRunnerMixin):
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_type=StepType.inference,
step_id=step_id,
delta=delta,
)
@ -633,7 +651,7 @@ class ChatAgent(ShieldRunnerMixin):
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.inference.value,
step_type=StepType.inference,
step_id=step_id,
delta=delta,
)
@ -651,7 +669,9 @@ class ChatAgent(ShieldRunnerMixin):
output_attr = json.dumps(
{
"content": content,
"tool_calls": [json.loads(t.model_dump_json()) for t in tool_calls],
"tool_calls": [
json.loads(t.model_dump_json()) for t in tool_calls if isinstance(t, ToolCall)
],
}
)
span.set_attribute("output", output_attr)
@ -667,16 +687,18 @@ class ChatAgent(ShieldRunnerMixin):
if tool_calls:
content = ""
# Filter out string tool calls for CompletionMessage (only keep ToolCall objects)
valid_tool_calls = [t for t in tool_calls if isinstance(t, ToolCall)]
message = CompletionMessage(
content=content,
stop_reason=stop_reason,
tool_calls=tool_calls,
tool_calls=valid_tool_calls if valid_tool_calls else None,
)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.inference.value,
step_type=StepType.inference,
step_id=step_id,
step_details=InferenceStep(
# somewhere deep, we are re-assigning message or closing over some
@ -686,13 +708,14 @@ class ChatAgent(ShieldRunnerMixin):
turn_id=turn_id,
model_response=copy.deepcopy(message),
started_at=inference_start_time,
completed_at=datetime.now(UTC).isoformat(),
completed_at=datetime.now(UTC),
),
)
)
)
if n_iter >= self.agent_config.max_infer_iters:
max_iters = self.agent_config.max_infer_iters if self.agent_config.max_infer_iters is not None else 10
if n_iter >= max_iters:
logger.info(f"done with MAX iterations ({n_iter}), exiting.")
# NOTE: mark end_of_turn to indicate to client that we are done with the turn
# Do not continue the tool call loop after this point
@ -705,14 +728,16 @@ class ChatAgent(ShieldRunnerMixin):
yield message
break
if len(message.tool_calls) == 0:
if not message.tool_calls or len(message.tool_calls) == 0:
if stop_reason == StopReason.end_of_turn:
# TODO: UPDATE RETURN TYPE TO SEND A TUPLE OF (MESSAGE, ATTACHMENTS)
if len(output_attachments) > 0:
if isinstance(message.content, list):
message.content += output_attachments
# List invariance - attachments are compatible at runtime
message.content += output_attachments # type: ignore[arg-type]
else:
message.content = [message.content] + output_attachments
# List invariance - attachments are compatible at runtime
message.content = [message.content] + output_attachments # type: ignore[assignment]
yield message
else:
logger.debug(f"completion message with EOM (iter: {n_iter}): {str(message)}")
@ -725,11 +750,12 @@ class ChatAgent(ShieldRunnerMixin):
non_client_tool_calls = []
# Separate client and non-client tool calls
for tool_call in message.tool_calls:
if tool_call.tool_name in client_tools:
client_tool_calls.append(tool_call)
else:
non_client_tool_calls.append(tool_call)
if message.tool_calls:
for tool_call in message.tool_calls:
if tool_call.tool_name in client_tools:
client_tool_calls.append(tool_call)
else:
non_client_tool_calls.append(tool_call)
# Process non-client tool calls first
for tool_call in non_client_tool_calls:
@ -737,7 +763,7 @@ class ChatAgent(ShieldRunnerMixin):
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepStartPayload(
step_type=StepType.tool_execution.value,
step_type=StepType.tool_execution,
step_id=step_id,
)
)
@ -746,7 +772,7 @@ class ChatAgent(ShieldRunnerMixin):
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
step_type=StepType.tool_execution.value,
step_type=StepType.tool_execution,
step_id=step_id,
delta=ToolCallDelta(
parse_status=ToolCallParseStatus.in_progress,
@ -766,7 +792,7 @@ class ChatAgent(ShieldRunnerMixin):
if self.telemetry_enabled
else {},
) as span:
tool_execution_start_time = datetime.now(UTC).isoformat()
tool_execution_start_time = datetime.now(UTC)
tool_result = await self.execute_tool_call_maybe(
session_id,
tool_call,
@ -796,14 +822,14 @@ class ChatAgent(ShieldRunnerMixin):
)
],
started_at=tool_execution_start_time,
completed_at=datetime.now(UTC).isoformat(),
completed_at=datetime.now(UTC),
)
# Yield the step completion event
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepCompletePayload(
step_type=StepType.tool_execution.value,
step_type=StepType.tool_execution,
step_id=step_id,
step_details=tool_execution_step,
)
@ -833,7 +859,7 @@ class ChatAgent(ShieldRunnerMixin):
turn_id=turn_id,
tool_calls=client_tool_calls,
tool_responses=[],
started_at=datetime.now(UTC).isoformat(),
started_at=datetime.now(UTC),
),
)
@ -868,19 +894,20 @@ class ChatAgent(ShieldRunnerMixin):
toolgroup_to_args = toolgroup_to_args or {}
tool_name_to_def = {}
tool_name_to_def: dict[str, ToolDefinition] = {}
tool_name_to_args = {}
for tool_def in self.agent_config.client_tools:
if tool_name_to_def.get(tool_def.name, None):
raise ValueError(f"Tool {tool_def.name} already exists")
if self.agent_config.client_tools:
for tool_def in self.agent_config.client_tools:
if tool_name_to_def.get(tool_def.name, None):
raise ValueError(f"Tool {tool_def.name} already exists")
# Use input_schema from ToolDef directly
tool_name_to_def[tool_def.name] = ToolDefinition(
tool_name=tool_def.name,
description=tool_def.description,
input_schema=tool_def.input_schema,
)
# Use input_schema from ToolDef directly
tool_name_to_def[tool_def.name] = ToolDefinition(
tool_name=tool_def.name,
description=tool_def.description,
input_schema=tool_def.input_schema,
)
for toolgroup_name_with_maybe_tool_name in agent_config_toolgroups:
toolgroup_name, input_tool_name = self._parse_toolgroup_name(toolgroup_name_with_maybe_tool_name)
tools = await self.tool_groups_api.list_tools(toolgroup_id=toolgroup_name)
@ -908,15 +935,17 @@ class ChatAgent(ShieldRunnerMixin):
else:
identifier = None
if tool_name_to_def.get(identifier, None):
raise ValueError(f"Tool {identifier} already exists")
if identifier:
tool_name_to_def[identifier] = ToolDefinition(
tool_name=identifier,
# Convert BuiltinTool to string for dictionary key
identifier_str = identifier.value if isinstance(identifier, BuiltinTool) else identifier
if tool_name_to_def.get(identifier_str, None):
raise ValueError(f"Tool {identifier_str} already exists")
tool_name_to_def[identifier_str] = ToolDefinition(
tool_name=identifier_str,
description=tool_def.description,
input_schema=tool_def.input_schema,
)
tool_name_to_args[identifier] = toolgroup_to_args.get(toolgroup_name, {})
tool_name_to_args[identifier_str] = toolgroup_to_args.get(toolgroup_name, {})
self.tool_defs, self.tool_name_to_args = (
list(tool_name_to_def.values()),
@ -1017,7 +1046,7 @@ def _interpret_content_as_attachment(
snippet = match.group(1)
data = json.loads(snippet)
return Attachment(
url=URL(uri="file://" + data["filepath"]),
content=URL(uri="file://" + data["filepath"]),
mime_type=data["mimetype"],
)

View file

@ -7,6 +7,7 @@
import asyncio
import json
from collections.abc import AsyncIterator
from typing import Any
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputToolFileSearch,
@ -22,6 +23,7 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseObjectStreamResponseWebSearchCallSearching,
OpenAIResponseOutputMessageFileSearchToolCall,
OpenAIResponseOutputMessageFileSearchToolCallResults,
OpenAIResponseOutputMessageMCPCall,
OpenAIResponseOutputMessageWebSearchToolCall,
)
from llama_stack.apis.common.content_types import (
@ -67,7 +69,7 @@ class ToolExecutor:
) -> AsyncIterator[ToolExecutionResult]:
tool_call_id = tool_call.id
function = tool_call.function
tool_kwargs = json.loads(function.arguments) if function.arguments else {}
tool_kwargs = json.loads(function.arguments) if function and function.arguments else {}
if not function or not tool_call_id or not function.name:
yield ToolExecutionResult(sequence_number=sequence_number)
@ -84,7 +86,16 @@ class ToolExecutor:
error_exc, result = await self._execute_tool(function.name, tool_kwargs, ctx, mcp_tool_to_server)
# Emit completion events for tool execution
has_error = error_exc or (result and ((result.error_code and result.error_code > 0) or result.error_message))
has_error = bool(
error_exc
or (
result
and (
((error_code := getattr(result, "error_code", None)) and error_code > 0)
or getattr(result, "error_message", None)
)
)
)
async for event_result in self._emit_completion_events(
function.name, ctx, sequence_number, output_index, item_id, has_error, mcp_tool_to_server
):
@ -101,7 +112,9 @@ class ToolExecutor:
sequence_number=sequence_number,
final_output_message=output_message,
final_input_message=input_message,
citation_files=result.metadata.get("citation_files") if result and result.metadata else None,
citation_files=(
metadata.get("citation_files") if result and (metadata := getattr(result, "metadata", None)) else None
),
)
async def _execute_knowledge_search_via_vector_store(
@ -188,8 +201,9 @@ class ToolExecutor:
citation_files[file_id] = filename
# Cast to proper InterleavedContent type (list invariance)
return ToolInvocationResult(
content=content_items,
content=content_items, # type: ignore[arg-type]
metadata={
"document_ids": [r.file_id for r in search_results],
"chunks": [r.content[0].text if r.content else "" for r in search_results],
@ -209,51 +223,60 @@ class ToolExecutor:
) -> AsyncIterator[ToolExecutionResult]:
"""Emit progress events for tool execution start."""
# Emit in_progress event based on tool type (only for tools with specific streaming events)
progress_event = None
if mcp_tool_to_server and function_name in mcp_tool_to_server:
sequence_number += 1
progress_event = OpenAIResponseObjectStreamResponseMcpCallInProgress(
item_id=item_id,
output_index=output_index,
yield ToolExecutionResult(
stream_event=OpenAIResponseObjectStreamResponseMcpCallInProgress(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
),
sequence_number=sequence_number,
)
elif function_name == "web_search":
sequence_number += 1
progress_event = OpenAIResponseObjectStreamResponseWebSearchCallInProgress(
item_id=item_id,
output_index=output_index,
yield ToolExecutionResult(
stream_event=OpenAIResponseObjectStreamResponseWebSearchCallInProgress(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
),
sequence_number=sequence_number,
)
elif function_name == "knowledge_search":
sequence_number += 1
progress_event = OpenAIResponseObjectStreamResponseFileSearchCallInProgress(
item_id=item_id,
output_index=output_index,
yield ToolExecutionResult(
stream_event=OpenAIResponseObjectStreamResponseFileSearchCallInProgress(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
),
sequence_number=sequence_number,
)
if progress_event:
yield ToolExecutionResult(stream_event=progress_event, sequence_number=sequence_number)
# For web search, emit searching event
if function_name == "web_search":
sequence_number += 1
searching_event = OpenAIResponseObjectStreamResponseWebSearchCallSearching(
item_id=item_id,
output_index=output_index,
yield ToolExecutionResult(
stream_event=OpenAIResponseObjectStreamResponseWebSearchCallSearching(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
),
sequence_number=sequence_number,
)
yield ToolExecutionResult(stream_event=searching_event, sequence_number=sequence_number)
# For file search, emit searching event
if function_name == "knowledge_search":
sequence_number += 1
searching_event = OpenAIResponseObjectStreamResponseFileSearchCallSearching(
item_id=item_id,
output_index=output_index,
yield ToolExecutionResult(
stream_event=OpenAIResponseObjectStreamResponseFileSearchCallSearching(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
),
sequence_number=sequence_number,
)
yield ToolExecutionResult(stream_event=searching_event, sequence_number=sequence_number)
async def _execute_tool(
self,
@ -261,7 +284,7 @@ class ToolExecutor:
tool_kwargs: dict,
ctx: ChatCompletionContext,
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
) -> tuple[Exception | None, any]:
) -> tuple[Exception | None, Any]:
"""Execute the tool and return error exception and result."""
error_exc = None
result = None
@ -284,9 +307,13 @@ class ToolExecutor:
kwargs=tool_kwargs,
)
elif function_name == "knowledge_search":
response_file_search_tool = next(
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
None,
response_file_search_tool = (
next(
(t for t in ctx.response_tools if isinstance(t, OpenAIResponseInputToolFileSearch)),
None,
)
if ctx.response_tools
else None
)
if response_file_search_tool:
# Use vector_stores.search API instead of knowledge_search tool
@ -322,35 +349,34 @@ class ToolExecutor:
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
) -> AsyncIterator[ToolExecutionResult]:
"""Emit completion or failure events for tool execution."""
completion_event = None
if mcp_tool_to_server and function_name in mcp_tool_to_server:
sequence_number += 1
if has_error:
completion_event = OpenAIResponseObjectStreamResponseMcpCallFailed(
mcp_failed_event = OpenAIResponseObjectStreamResponseMcpCallFailed(
sequence_number=sequence_number,
)
yield ToolExecutionResult(stream_event=mcp_failed_event, sequence_number=sequence_number)
else:
completion_event = OpenAIResponseObjectStreamResponseMcpCallCompleted(
mcp_completed_event = OpenAIResponseObjectStreamResponseMcpCallCompleted(
sequence_number=sequence_number,
)
yield ToolExecutionResult(stream_event=mcp_completed_event, sequence_number=sequence_number)
elif function_name == "web_search":
sequence_number += 1
completion_event = OpenAIResponseObjectStreamResponseWebSearchCallCompleted(
web_completion_event = OpenAIResponseObjectStreamResponseWebSearchCallCompleted(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
yield ToolExecutionResult(stream_event=web_completion_event, sequence_number=sequence_number)
elif function_name == "knowledge_search":
sequence_number += 1
completion_event = OpenAIResponseObjectStreamResponseFileSearchCallCompleted(
file_completion_event = OpenAIResponseObjectStreamResponseFileSearchCallCompleted(
item_id=item_id,
output_index=output_index,
sequence_number=sequence_number,
)
if completion_event:
yield ToolExecutionResult(stream_event=completion_event, sequence_number=sequence_number)
yield ToolExecutionResult(stream_event=file_completion_event, sequence_number=sequence_number)
async def _build_result_messages(
self,
@ -360,21 +386,18 @@ class ToolExecutor:
tool_kwargs: dict,
ctx: ChatCompletionContext,
error_exc: Exception | None,
result: any,
result: Any,
has_error: bool,
mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] | None = None,
) -> tuple[any, any]:
) -> tuple[Any, Any]:
"""Build output and input messages from tool execution results."""
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
# Build output message
message: Any
if mcp_tool_to_server and function.name in mcp_tool_to_server:
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutputMessageMCPCall,
)
message = OpenAIResponseOutputMessageMCPCall(
id=item_id,
arguments=function.arguments,
@ -383,10 +406,14 @@ class ToolExecutor:
)
if error_exc:
message.error = str(error_exc)
elif (result and result.error_code and result.error_code > 0) or (result and result.error_message):
message.error = f"Error (code {result.error_code}): {result.error_message}"
elif result and result.content:
message.output = interleaved_content_as_str(result.content)
elif (result and (error_code := getattr(result, "error_code", None)) and error_code > 0) or (
result and getattr(result, "error_message", None)
):
ec = getattr(result, "error_code", "unknown")
em = getattr(result, "error_message", "")
message.error = f"Error (code {ec}): {em}"
elif result and (content := getattr(result, "content", None)):
message.output = interleaved_content_as_str(content)
else:
if function.name == "web_search":
message = OpenAIResponseOutputMessageWebSearchToolCall(
@ -401,17 +428,17 @@ class ToolExecutor:
queries=[tool_kwargs.get("query", "")],
status="completed",
)
if result and "document_ids" in result.metadata:
if result and (metadata := getattr(result, "metadata", None)) and "document_ids" in metadata:
message.results = []
for i, doc_id in enumerate(result.metadata["document_ids"]):
text = result.metadata["chunks"][i] if "chunks" in result.metadata else None
score = result.metadata["scores"][i] if "scores" in result.metadata else None
for i, doc_id in enumerate(metadata["document_ids"]):
text = metadata["chunks"][i] if "chunks" in metadata else None
score = metadata["scores"][i] if "scores" in metadata else None
message.results.append(
OpenAIResponseOutputMessageFileSearchToolCallResults(
file_id=doc_id,
filename=doc_id,
text=text,
score=score,
text=text if text is not None else "",
score=score if score is not None else 0.0,
attributes={},
)
)
@ -421,27 +448,32 @@ class ToolExecutor:
raise ValueError(f"Unknown tool {function.name} called")
# Build input message
input_message = None
if result and result.content:
if isinstance(result.content, str):
content = result.content
elif isinstance(result.content, list):
content = []
for item in result.content:
input_message: OpenAIToolMessageParam | None = None
if result and (result_content := getattr(result, "content", None)):
# all the mypy contortions here are still unsatisfactory with random Any typing
if isinstance(result_content, str):
msg_content: str | list[Any] = result_content
elif isinstance(result_content, list):
content_list: list[Any] = []
for item in result_content:
part: Any
if isinstance(item, TextContentItem):
part = OpenAIChatCompletionContentPartTextParam(text=item.text)
elif isinstance(item, ImageContentItem):
if item.image.data:
url = f"data:image;base64,{item.image.data}"
url_value = f"data:image;base64,{item.image.data}"
else:
url = item.image.url
part = OpenAIChatCompletionContentPartImageParam(image_url=OpenAIImageURL(url=url))
url_value = str(item.image.url) if item.image.url else ""
part = OpenAIChatCompletionContentPartImageParam(image_url=OpenAIImageURL(url=url_value))
else:
raise ValueError(f"Unknown result content type: {type(item)}")
content.append(part)
content_list.append(part)
msg_content = content_list
else:
raise ValueError(f"Unknown result content type: {type(result.content)}")
input_message = OpenAIToolMessageParam(content=content, tool_call_id=tool_call_id)
raise ValueError(f"Unknown result content type: {type(result_content)}")
# OpenAIToolMessageParam accepts str | list[TextParam] but we may have images
# This is runtime-safe as the API accepts it, but mypy complains
input_message = OpenAIToolMessageParam(content=msg_content, tool_call_id=tool_call_id) # type: ignore[arg-type]
else:
text = str(error_exc) if error_exc else "Tool execution failed"
input_message = OpenAIToolMessageParam(content=text, tool_call_id=tool_call_id)